This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: "Univalent function" – news · newspapers · books · scholar · JSTOR (October 2021)

In mathematics, in the branch of complex analysis, a holomorphic function on an open subset of the complex plane is called univalent if it is injective.

## Examples

The function $f\colon z\mapsto 2z+z^{2)$ is univalent in the open unit disc, as $f(z)=f(w)$ implies that $f(z)-f(w)=(z-w)(z+w+2)=0$ . As the second factor is non-zero in the open unit disc, $f$ must be injective.

## Basic properties

One can prove that if $G$ and $\Omega$ are two open connected sets in the complex plane, and

$f:G\to \Omega$ is a univalent function such that $f(G)=\Omega$ (that is, $f$ is surjective), then the derivative of $f$ is never zero, $f$ is invertible, and its inverse $f^{-1)$ is also holomorphic. More, one has by the chain rule

$(f^{-1})'(f(z))={\frac {1}{f'(z)))$ for all $z$ in $G.$ ## Comparison with real functions

For real analytic functions, unlike for complex analytic (that is, holomorphic) functions, these statements fail to hold. For example, consider the function

$f:(-1,1)\to (-1,1)\,$ given by ƒ(x) = x3. This function is clearly injective, but its derivative is 0 at x = 0, and its inverse is not analytic, or even differentiable, on the whole interval (−1, 1). Consequently, if we enlarge the domain to an open subset G of the complex plane, it must fail to be injective; and this is the case, since (for example) f(εω) = f(ε) (where ω is a primitive cube root of unity and ε is a positive real number smaller than the radius of G as a neighbourhood of 0).