This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Valuation of options" – news · newspapers · books · scholar · JSTOR (October 2021) (Learn how and when to remove this template message)

In finance, a price (premium) is paid or received for purchasing or selling options. This article discusses the calculation of this premium in general. For further detail, see: Mathematical finance § Derivatives pricing: the Q world for discussion of the mathematics; Financial engineering for the implementation; as well as Financial modeling § Quantitative finance generally.

This price can be split into two components: intrinsic value, and time value (also called "extrinsic value").^{[1]}

The *intrinsic value* is the difference between the underlying spot price and the strike price, to the extent that this is in favor of the option holder. For a call option, the option is in-the-money if the underlying spot price is higher than the strike price; then the intrinsic value is the underlying price minus the strike price. For a put option, the option is in-the-money if the *strike* price is higher than the underlying spot price; then the intrinsic value is the strike price minus the underlying spot price. Otherwise the intrinsic value is zero.

For example, when a DJI call (bullish/long) option is 18,000 and the underlying DJI Index is priced at $18,050 then there is a $50 advantage even if the option were to expire today. This $50 is the intrinsic value of the option.

In summary, intrinsic value:call option

- = current stock price − strike price (call option)

- = strike price − current stock price (put option)

Main article: Option time value |

The option premium is always greater than the intrinsic value up to the expiration event. This extra money is for the risk which the option writer/seller is undertaking. This is called the time value.

Time value is the amount the option trader is paying for a contract above its intrinsic value, with the belief that prior to expiration the contract value will increase because of a favourable change in the price of the underlying asset. The longer the length of time until the expiry of the contract, the greater the time value. So,

- Time value = option premium − intrinsic value

See also: Option (finance) § Valuation, Mathematical finance § Derivatives pricing: the Q world, and Financial modeling § Quantitative finance |

Because the values of option contracts depend on a number of different variables in addition to the value of the underlying asset, they are complex to value. There are many pricing models in use, although all essentially incorporate the concepts of rational pricing (i.e. risk neutrality), moneyness, option time value and put–call parity.

The valuation itself combines (1) a model of the behavior ("process") of the underlying price with (2) a mathematical method which returns the premium as a function of the assumed behavior.

The models in (1) range from the (prototypical) Black–Scholes model for equities, to the Heath–Jarrow–Morton framework for interest rates, to the Heston model where volatility itself is considered stochastic. See Asset pricing for a listing of the various models here.

As regards (2), the implementation, the most common approaches are:

- Closed form, analytic models: the most basic of these are the Black–Scholes formula and the Black model.
- Lattice models (Trees): Binomial options pricing model; Trinomial tree
- Monte Carlo methods for option pricing
- Finite difference methods for option pricing
- More recently, the volatility surface-aware models in the local volatility and stochastic volatility families.

The Black model extends Black-Scholes from equity to options on futures, bond options, swaptions, (i.e. options on swaps), and interest rate cap and floors (effectively options on the interest rate).

The final four are numerical methods, usually requiring sophisticated derivatives-software, or a numeric package such as MATLAB. For these, the result is calculated as follows, even if the numerics differ: (i) a risk-neutral distribution is built for the underlying price over time (for non-European options, at least at each exercise date) via the selected model, as calibrated to the market; (ii) the option's payoff-value is determined at each of these times, for each of these prices; (iii) the payoffs are discounted at the risk-free rate, and then averaged. For the analytic methods, these same are subsumed into a single probabilistic result; see Black–Scholes model § Interpretation.

Further information: Financial economics § Derivative pricing, and Financial economics § Departures from normality |

After the financial crisis of 2007–2008, counterparty credit risk considerations must enter into the valuation, previously performed in an entirely "risk neutral world". There are then ^{[2]} three major developments re option pricing:

- For discounting, the overnight indexed swap (OIS) curve is now typically used for the "risk free rate", as opposed to LIBOR as previously (LIBOR is due to be phased out by the end of 2021, with replacements including SOFR and TONAR); see Interest rate swap § Valuation and pricing. Relatedly, the "Multi-curve framework" is now standard in the valuation of interest rate derivatives and for fixed income analysis more generally.
- As mentioned, option pricing models must consider the volatility surface, and the numerics will then require a zeroth calibration step, such that observed prices are returned before new prices and / or "greeks" can be calculated. To do so, banks will apply local- or stochastic volatility models, such as Heston mentioned above (or less common, implied trees).
- The risk neutral value, no matter how determined, is then adjusted for the impact of counterparty credit risk via a credit valuation adjustment, or CVA, as well as various of the other XVA which may also be appended.