This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (August 2019) (Learn how and when to remove this template message)

As presented by Hao Wang (1954, 1957), his basic machine B is an extremely simple computational model equivalent to the Turing machine. It is "the first formulation of a Turing-machine theory in terms of computer-like models" (Minsky, 1967: 200). With only 4 sequential instructions it is very similar to, but even simpler than, the 7 sequential instructions of the Post–Turing machine. In the same paper, Wang introduced a variety of equivalent machines, including what he called the W-machine, which is the B-machine with an "erase" instruction added to the instruction set.

Description

As defined by Wang (1954) the B-machine has at its command only 4 instructions:

A sample of a simple B-machine instruction is his example (p. 65):

1. *, 2. →, 3. C2, 4. →, 5. ←

He rewrites this as a collection of ordered pairs:

{ ( 1, * ), ( 2, → ), ( 3, C2 ), ( 4, → ), ( 5, ← ) }

Wang's W-machine is simply the B-machine with the one additional instruction

See also

References

"We can now demonstrate the remarkable fact, first shown by Wang [1957], that for any Turing machine T there is an equivalent Turing machine TN that never changes a once-written symbol! In fact, we will construct a two-symbol machine TN that can only change blank squares on its tape to 1's but can not change a 1 back to a blank." Minsky then offers a proof of this.