Woldemar Voigt
Woldemar Voigt, c. 1908
Born(1850-09-02)2 September 1850
Died13 December 1919(1919-12-13) (aged 69)
Alma materUniversity of Königsberg
Known for
AwardsForMemRS (1913)
Scientific career
InstitutionsUniversity of Göttingen
Doctoral advisorFranz Ernst Neumann
Doctoral studentsPaul Drude

Woldemar Voigt (German: [foːkt] ; 2 September 1850 – 13 December 1919) was a German physicist.


Voigt was born in Leipzig, and died in Göttingen. He was a student of Franz Ernst Neumann.[1] Voigt taught at the Georg August University of Göttingen and eventually went on to head the Mathematical Physics Department there. He was succeeded in 1914 by Peter Debye, who took charge of the theoretical department of the Physical Institute.

Voigt worked on crystal physics, thermodynamics and electro-optics. His main work was the Lehrbuch der Kristallphysik (Textbook on crystal physics), first published in 1910. He discovered what is now called the Voigt effect in 1898. The word tensor in its current meaning was introduced by him in 1898.[2] Voigt profile and Voigt notation are named after him. He was also an amateur musician and became known as a Bach expert (see External links). He was the first to suggest, in 1886, that Bach's Concerto_for_two_harpsichords_in_C_minor,_BWV_1060 was originally scored for violin and oboe.

In 1887 Voigt formulated a form of the Lorentz transformation between a rest frame of reference and a frame moving with speed in the direction. However, as Voigt himself said, the transformation was aimed at a specific problem and did not carry with it the idea of a general coordinate transformation, as is the case in relativity theory.[3]

The Voigt transformation

Further information: History of Lorentz transformations

In modern notation Voigt's transformation was

where . If the right-hand sides of his equations are multiplied by , they become the modern Lorentz transformation. Hermann Minkowski said in 1908 that the transformations which play the main role in the principle of relativity were first examined by Voigt in 1887. Also Hendrik Lorentz (1909) is on record as saying that he could have taken these transformations into his theory of electrodynamics, if only he had known of them, rather than developing his own. It is interesting then to examine the consequences of these transformations from this point of view. Lorentz might then have seen that the transformation introduced relativity of simultaneity, and also time dilation. However, the magnitude of the dilation was greater than the now accepted value in the Lorentz transformations. Moving clocks, obeying Voigt's time transformation, indicate an elapsed time , while stationary clocks indicate an elapsed time .

Since Voigt's transformation preserves the speed of light in all frames, the Michelson–Morley experiment and the Kennedy–Thorndike experiment can not distinguish between the two transformations. The crucial question is the issue of time dilation. The experimental measurement of time dilation by Ives and Stillwell (1938) and others settled the issue in favor of the Lorentz transformation.

See also


Primary Sources
  1. ^ Olesko, Kahryn M. (1991), Physics as a Calling: Discipline and Practice in the Königsberg Seminar for Physics, Cornell University Press
  2. ^ Woldemar Voigt, Die fundamentalen physikalischen Eigenschaften der Krystalle in elementarer Darstellung [The fundamental physical properties of crystals in an elementary presentation] (Leipzig, Germany: Veit & Co., 1898), p. 20. From page 20: "Wir wollen uns deshalb nur darauf stützen, dass Zustände der geschilderten Art bei Spannungen und Dehnungen nicht starrer Körper auftreten, und sie deshalb tensorielle, die für sie charakteristischen physikalischen Grössen aber Tensoren nennen." (We therefore want [our presentation] to be based only on [the assumption that] conditions of the type described occur during stresses and strains of non-rigid bodies, and therefore call them "tensorial" but call the characteristic physical quantities for them "tensors".)
  3. ^ Voigt, W. (1887), "Ueber das Doppler'sche Princip (On the Principle of Doppler)", Göttinger Nachrichten (7): 41–51; Reprinted with additional comments by Voigt in Physikalische Zeitschrift XVI, 381–386 (1915).
Secondary sources