Cet article est une ébauche concernant la biologie.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Consultez la liste des tâches à accomplir en page de discussion.

La diapause est une phase génétiquement déterminée dans le développement d'un organisme au cours de laquelle celui-ci diminue l'intensité de ses activités métaboliques.

On considère que l'animal, le végétal ou la cellule (bactérie, champignon, zygote ou ovule fécondé...) adopte une forme de vie ralentie selon des processus physiologiques et biologiques complexes en réponse anticipée à des variations de l'environnement. Il s'agirait donc d'un mécanisme adaptatif permettant aux animaux de résister et de survivre aux variations extrêmes des conditions de vie dans leur habitat (chaleur, sécheresse ou froidure excessives, nourriture raréfiée...). Il permettrait aussi de synchroniser le cycle de vie de l'organisme, ainsi que dans certains cas le cycle reproductif et le développement embryonnaire, avec le cycle des saisons[1].

De nombreuses espèces d'oiseaux ont développé une autre stratégie pour fuir les mauvaises conditions : la migration ; donc ils ne font pas de diapause[2].

Correspondant à une période de vie ralentie, la diapause est à déterminisme génétique (dormance prédictive), ce qui la distingue de la quiescence ou de l'hibernation à déterminisme environnemental (dormance conséquentielle).

Différents types de diapauses et exemples dans le monde animal

[modifier | modifier le code]

La diapause adaptative environnementale

[modifier | modifier le code]

Celle-ci est fréquente et bien étudiée chez les insectes, « mais elle est largement répandue dans le monde des invertébrés : autres arthropodes (araignées, petits crustacés d'eau douce ou d'eau saumâtre), vers de terre, nématodes, éponges... »[1]. Les invertébrés (ainsi d'ailleurs que beaucoup de vertébrés comme les poissons ou les reptiles) sont ectothermes, c'est-à-dire qu'ils ne disposent pas d'un mécanisme d'autorégulation de leur température interne ni d'un contrôle métabolique de leur température corporelle par production de chaleur comme les mammifères ou les oiseaux qui sont endothermes et homéothermes (leur température interne est globalement maintenue constante quelle que soit la température externe) ; à l'inverse les invertébrés sont aussi poïkilothermes, c'est-à-dire que leur température varie avec celle de leur milieu. Or peu d'invertébrés effectuent des migrations saisonnières[3] (sauf certains papillons, criquets ou libellule par exemple : voir les articles consacrés à la migration des papillons et à la migration des insectes). Quand vient la saison froide, ils n'ont d'autre choix que d'adopter un mode de vie ralenti dont l'activité métabolique réduite à l'extrême permet à l'insecte (par exemple) de vivre "sur ses réserves" en attendant des jours plus favorables à cette activité. Cette réponse à la contrainte environnementale par la vie ralentie peut n'être qu'une simple quiescence, qui cesse dès le retour de températures plus élevées. En revanche, « la diapause est déclenchée avant l'apparition des facteurs défavorables, et elle n'est pas levée par la seule disparition de ceux-ci ; elle se maintient un certain temps quel que soit l'environnement présent[1]. »

Cette diapause correspond donc à un arrêt du développement (ou à une quasi suspension de l'activité métabolique) au cours de la vie d'un insecte (qu'il soit au stade embryon, larve, nymphe ou adulte)[4]. La diapause est déclenchée par un événement extérieur (par exemple la réduction de la longueur du jour en automne) ; elle est levée (le développement ou l'activité métabolique reprennent) lorsque le temps nécessaire exact est passé : dans ce cas, fréquent, l'insecte passe l'hiver sans avoir besoin de trouver sa nourriture et reprend son activité quand la mauvaise saison est définitivement terminée. Ce n'est donc pas la variation de température qui régente la diapause[3] mais l'évolution de la longueur des jours qui est un phénomène plus régulier.

Types de diapause adaptative

[modifier | modifier le code]

La diapause peut être obligatoire ou facultative.

La diapause est obligatoire chez les espèces univoltines d'insectes (qui ont une génération par an), ou chez les espèces semi-voltines (ayant un cycle bisannuel ou plus lent encore). Elle est inscrite dans leur programme génétique de développement et synchronisée avec les saisons. Elle se produit toujours, et à un stade déterminé du cycle de développement de chaque individu[1].

Mais la plupart des diapauses sont facultatives : la diapause facultative dépend d'un facteur limitant dans les conditions environnementales, qui fera qu'elle aura lieu ou pas : pour les espèces polyvoltines (à plusieurs générations par an), la diapause s'exprime en fonction des conditions de l'environnement et à certains stades critiques du développement[1].

La diapause facultative se présente sous deux formes, selon les espèces :

Exemple de diapause larvaire : larve d'un coléoptère Mordellistena en situation de diapause dans une galle causée par la larve de la mouche Eurosta solidaginis (parasitée et tuée par celle du coléoptère) — voir Galle produite par la mouche E. solidaginis. (Churchville Nature Center, Comté de Bucks, Pennsylvanie, USA).

Stades diapausants

[modifier | modifier le code]

Selon les espèces, la diapause peut se produire à n'importe quel moment du développement.

Chez les insectes :

Chez les vertébrés, qui n'ont pas de larves, on ne retrouve bien sûr que des diapauses embryonnaires ou adultes.

En fonction de la durée de vie de l'animal, il pourra présenter plusieurs types de diapauses : le criquet connaît une diapause embryonnaire et une diapause adulte, ce qui fait qu'il vit plus longtemps[2].

Étapes de la diapause

[modifier | modifier le code]

Il y a quatre étapes dans la diapause[2] :

Groupe de papillons monarques hivernant en diapause sur des oyamel (conifères). L’un des arbres en est complètement recouvert (réserve d’Angangueo, État de Michoacán, Mexique, février 2000).

La diapause embryonnaire

[modifier | modifier le code]

Principe et espèces concernées

[modifier | modifier le code]

Ce phénomène est donc appelé « diapause embryonnaire » (embryonic diapause[5]), ou « développement discontinu » (discontinuous development[6]), ou encore chez les mammifères « ovo implantation différée[7] » (delayed implantation[8]). Ce type de diapause bien particulier est largement répandu dans le monde animal puisqu’il s’observe chez de nombreux invertébrés (insectes), mais aussi vertébrés (poissons, oiseaux, mammifères)[9]. Il consiste, selon les espèces, en un arrêt temporaire ou un ralentissement du développement de l’embryogenèse, s'exprimant parfois, comme dans le cas des mammifères, en une phase d'attente à l'intérieur du corps de la femelle d'un ovule fécondé[9]. Cette diapause embryonnaire se produit à un stade très précis du développement de l'embryon : par exemple chez le tatou le blocage de la segmentation cellulaire se fait au stade 100 cellules embryonnaires + 600 cellules trophoblastiques, c'est-à-dire au stade d'embryon éclos[10]. Chez les marsupiaux il se produit au stade 60 à 100 cellules au total (selon les espèces), donc au stade de blastocyste encapsidé[2].

La diapause embryonnaire peut elle aussi être facultative (c'est le cas le plus fréquent[1]), c’est-à-dire induite par des conditions physiologiques contingentes, généralement en lien avec un stress métabolique comme la lactation[6] ; ou bien elle peut être aussi, plus rarement, obligatoire, c’est-à-dire toujours présente dans chaque gestation d’une espèce, comme un passage obligé du processus reproductif et inscrite dans son programme génétique de développement. Mais celle-ci est toujours elle aussi d’une durée variable en fonction des conditions extérieures, et du laps de temps variable séparant la date de fécondation du moment optimal pour la naissance. En effet, dans ce cas de diapause embryonnaire obligatoire, les signaux déclencheurs proximaux pour la régulation de la durée de la diapause embryonnaire sont eux aussi liés à la photopériode[5]. Ce qui implique que la diapause embryonnaire obligatoire est elle aussi synchronisée avec les saisons[2].

Chez les mammifères, la diapause embryonnaire obligatoire concerne une ou plusieurs espèces des familles suivantes : Cervidae (chevreuils), Mephitidae (moufettes), Mustelidae (loutres, martres, furets, fouines, belettes), Odobenidae (morses), Otariidae, Phocidae, Ursidae (soit otaries, phoques et ours, et quelques autres carnivores), Talpidae (taupes) ; et des ordres suivants : Chiroptera (chauves-souris), Cingulata (tatous), Pilosa (tamanoirs).

Toujours chez les mammifères, la diapause embryonnaire facultative concerne une ou plusieurs espèces des familles suivantes : Soricidae (musaraignes), Cricetidae et Muridae (campagnols, souris, rats), et une quarantaine d’espèces de l’infra-classe des Marsupialia (ou marsupiaux, dont plusieurs espèces de wallabys).

On trouvera un bref tableau des espèces concernées par la diapause embryonnaire préimplantatoire, réparties entre diapause embryonnaire obligatoire et facultative, à la page 5 du document de l'Université de Lorraine déjà cité[2], ainsi qu'une liste plus complète, mais encore non exhaustive, à la page 164 (ou deuxième page de l'extrait accessible en ligne), tableau no 1, de l'étude du "Centre de Recherche en Reproduction Animale" de l'Université de Montréal publiée dans The International Journal of Developmental Biology déjà citée elle aussi[11]. De même on trouvera un tableau des caractéristiques (elles aussi réparties entre diapause obligatoire et diapause facultative) des diapauses embryonnaires selon les espèces en conclusion d'une autre étude du "Centre de Recherche en Reproduction Animale" de l'Université de Montréal, elle aussi déjà évoquée (voir tableau no 1[6]).

La diapause embryonnaire de substitution

[modifier | modifier le code]

C'est le cas par exemple du kangourou : si la mère perd le petit qu'elle a dans sa poche, l'embryon sort de sa diapause embryonnaire et relance le développement embryonnaire. Ce mécanisme permet d'assurer une seconde chance d'avoir un petit[12].

La diapause embryonnaire d'adaptation au climat

[modifier | modifier le code]

Cette diapause embryonnaire se rencontre également chez plusieurs invertébrés mais aussi chez des vertébrés, et notamment, pour les mammifères, chez le blaireau et le chevreuil[9],[7], ainsi que chez l'ours, le vison, le phoque et le lion de mer, la musaraigne, la mouffette, la plupart des tatous (famille des Dasypodidae), dont le petit Tatou des Andes, etc.[8].

Mais cette fois, elle permet une mise bas à une période climatique et végétale favorable. En effet, cette diapause embryonnaire fait que la naissance se produit lorsque les conditions de température et de recherche de nourriture sont les plus favorables, par exemple en début d'été (mai-juin pour les chevreuils[7]). Ainsi la naissance intervient plus tard que la date qui était prévisible en fonction de la durée de gestation, laquelle demeure en suspens pour une durée variable permettant de s'ajuster aux variations saisonnières du climat.

La diapause embryonnaire de régulation des portées

[modifier | modifier le code]

Les contraintes environnementales sont donc décisives pour déterminer la longueur de la diapause embryonnaire (qui peut être variable à l’intérieur d’une même espèce, et chez la même femelle au cours de sa vie et au gré des diverses portées), alors que la période gestative proprement dite (soit après l’implantation intra-utérine), est en général toujours la même dans l’espèce au sein d’une fourchette stable[8].

Mais les contraintes métaboliques sont aussi décisives : en effet, si une nouvelle conception devait se produire peu après la précédente parturition, alors les petits de la nouvelle portée naîtraient avant que les jeunes de la portée précédente ne soient sevrés, si bien que la quantité de lait disponible pour les nouveau-nés serait sévèrement limitée, et leurs chances de survie gravement compromises[8].

Mécanisme et explication de la diapause embryonnaire

[modifier | modifier le code]

Description

[modifier | modifier le code]

Ce phénomène de diapause embryonnaire est caractérisé, chez les espèces concernées, par le fait que l’œuf fécondé ou l’embryon ne s’implante pas dans l’utérus maternel immédiatement après la fécondation, mais reste dans un état de croissance suspendue (dormance prédictive en ce cas), bloqué au stade de blastocyste[8] ou blastula et cesse tout développement pendant une période variable, dont la durée est conditionnée à la fois par des facteurs internes et des facteurs externes. Les embryons, à l'intérieur du corps de la femelle, produisent tout de même leur propre placenta, en attendant leur implantation intra-utérine[13]. Habituellement les embryons proviennent d'un seul zygote[13]. La phase réelle de gestation et de développement embryonnaire commence après la diapause, les deux périodes diapause et gestation déterminant ensemble la durée totale de gravidité[7].

Il s’agirait donc là d’une stratégie reproductive gagnante[6], qui consisterait en un découplage entre accouplement, fécondation et parturition, afin que ceux-ci interviennent aux moments les plus propices à la survie de l’espèce. Cette stratégie fait partie des stratégies évolutives destinées à assurer le succès de la reproduction et les meilleures chances de survie aux nouveau-nés[6]. Elle peut être rattachée à la "Stratégie K" du modèle évolutif. Cette stratégie de diapause embryonnaire est assez fréquemment employée dans le règne animal, puisqu’entre autres plus de 130 espèces de mammifères l’ont empruntée[5].

Aspects génétiques, endocriniens et chimiques du processus

[modifier | modifier le code]

Une équipe de chercheurs de la Children’s Research Foundation de Cincinnati aux États-Unis, dirigée par Sudhansu Dey, a étudié en 2013 en détail le processus d’implantation d’un embryon dans l’utérus d’une souris femelle. Ils ont ainsi pu identifier un gène, le MSX1, qui pourrait jouer un rôle déterminant dans le déclenchement et l’arrêt de la diapause embryonnaire, car ils ont constaté qu’il était particulièrement actif juste avant l’implantation[14].

Pour tester cette hypothèse, ils ont induit hormonalement un report de grossesse chez des femelles souris, visons et wallabies. Ils ont ainsi constaté que MSX1 était en effet plus actif lorsque la grossesse était retardée, et ce pour les trois espèces. Les résultats ont aussi confirmé que MSX1 et les gènes liés sont bien responsables de la production de protéines et sont actifs dans les cellules épithéliales, un type cellulaire particulièrement présent à l’intérieur de l’utérus. On attend de confirmer ces observations chez d’autres espèces qui connaissent la diapause embryonnaire comme les ours polaires et les pandas géants. En tout cas, il s’avère que les gènes MSX, qui constituent une ancienne famille de gènes, ont été préservés durant longtemps et jouent un rôle important dans le phénomène de la diapause embryonnaire[14].

Par ailleurs, dans l’étude du Centre de Recherche en Reproduction Animale de l’Université de Montréal déjà citée et disponible en ligne[5], trois modèles différents de diapause embryonnaire ont été étudiés en détail : chez la souris, les carnivores mustélidés et le wallaby.

Il ressort assez nettement de ces observations que, bien que le signal hormonal endocrinien responsable de l’induction de la diapause (comme du redémarrage du développement après la diapause) puisse largement varier d’une espèce à l’autre, on a pu néanmoins dégager un certain nombre de traits communs : les données indiquent à l’évidence que l’utérus exerce toujours une influence régulatrice proximale et décisive sur le déclenchement de la sortie de diapause et de l’implantation de l’embryon. Certains facteurs ont été identifiés comme cruciaux pour cette régulation utérine, en particulier les polyamines.

D’autres études récentes indiquent que la diapause peut être induite artificiellement chez des espèces qui ne la connaissent pas dans la nature. Ceci suggère que la potentialité d’apparition de la diapause chez les mammifères soit due à un événement évolutif singulier adopté comme mécanisme de contrôle favorisant un meilleur succès reproductif. Des travaux ultérieurs aux niveaux moléculaire, cellulaire et de l’organisme seront nécessaires avant que la base physiologique de la diapause ne soit totalement élucidée[15].

Et chez l'humain ?

[modifier | modifier le code]

Selon Sudhansu Dey (déjà nommé) interrogé par Live Science, une meilleure compréhension de ce processus de la diapause embryonnaire pourrait éventuellement avoir des implications chez l’humain, en jouant sur l’activité de ce gène MSX1 dont il a contribué à établir le rôle dans le report du processus gestatif :

« Si nous maintenons MSX1 à des niveaux élevés chez les femmes, peut-être pourrions-nous étendre la phase réceptive pour la fertilisation[14]. »

Mais l’horizon d’une telle possibilité est encore assez lointain et nécessitera plusieurs années de travaux complémentaires, conclut le chercheur.

Notes et références

[modifier | modifier le code]
  1. a b c d e et f Catherine BLAIS, René LAFONT, « DIAPAUSE, zoologie », sur Encyclopædia Universalis [en ligne] (consulté le ).
  2. a b c d e f g h et i « TD3 BIODEV : LA DIAPAUSE », sur Université de Lorraine, année académique 2018/19 (consulté le ).
  3. a et b Catherine BLAIS, René LAFONT, Bernard MILLET, Alain REINBERG, « Les rythmes animaux et l'adaptation de l'organisme au milieu », sur Encyclopædia Universalis [en ligne] (consulté le ).
  4. René LAFONT, Jean-Yves TOULLEC, « Développement des Insectes », sur Encyclopædia Universalis [en ligne] (consulté le ), Les arrêts de développement ou diapauses.
  5. a b c et d Notre traduction de cette étude, extraite de The International Journal of Developmental Biology, qui est accessible en entier sous format PDF ici : (en) Jane C. Fenelon, Arnab Banerjee, Bruce D. Murphy, « Embryonic diapause: development on hold. » [« La diapause embryonnaire, ou le développement contenu »], sur Semantic Scholar, (consulté le ). Et ici : (en) Jane C. Fenelon, Arnab Banerjee and Bruce D. Murphy. Centre de Recherche en Reproduction Animale, Université de Montréal, St-Hyacinthe QC Canada, « Embryonic diapause: development on hold », sur The International Journal of Developmental Biology, (consulté le ).
  6. a b c d et e Notre traduction de l'étude extraite de la revue Reproduction, volume 128 (2004)- édition 6 (déc.), de la Society for Reproduction and Fertility, Online (ISSN 1741-7899), Print (ISSN 1470-1626), accessible en ligne ici : (en + fr) Flavia L. Lopes, Joëlle A. Desmarais et Bruce D. Murphy, Centre de Recherche en Reproduction Animale, Faculté de Médecine Vétérinaire, Université de Montréal, St-Hyacinthe, Québec, Canada, « Embryonic diapause and its regulation » [« La diapause embryonnaire et sa régulation »], sur bioscientifica, Society for Reproduction and Fertility, (consulté le )
  7. a b c et d « Le Chevreuil », sur Office Français de la Biodiversité / Office National de la Chasse et de la Faune Sauvage, (consulté le ), § Reproduction.
  8. a b c d et e Notre traduction de : (en) « Implantation », sur uwyo.edu (Université du Wyoming) (consulté le ).
  9. a b et c « La diapause embryonnaire », sur Chassons.com, (consulté le ).
  10. « Développement embryonnaire précoce et nidation », sur CHU de Toulouse, (consulté le ).
  11. (en) Jane C. Fenelon, Arnab Banerjee, Bruce D. Murphy, « Embryonic diapause: development on hold. » [« La diapause embryonnaire, ou le développement contenu »], sur Semantic Scholar, (consulté le ).
  12. Voyage au centre de la vie Durée : 1 hour, 25 minutes Realisateur : CHINN PETER Production : FOX TELEVISION, PIONEER PRODUCTIONS France 5 - 19h00 dimanche 12 juin 2011
  13. a et b (en) George Feldhamer et alii, Mammalogy: adaption, diversity, ecology [« Mammalogie : adaptation, diversité, écologie »], Johns Hopkins University Press. Baltimore, Maryland., (ISBN 978-1421415888), pp. 346–347.
  14. a b et c Maxime Lambert, « comment certaines femelles parviennent à retarder le début d’une grossesse », sur Maxi Sciences, (consulté le ).
  15. Les trois derniers paragraphes sont adaptés du résumé introductif de cette étude déjà citée, à retrouver ici : (en) Jane C. Fenelon, Arnab Banerjee, Bruce D. Murphy, « Embryonic diapause: development on hold. » [« La diapause embryonnaire, ou le développement contenu »], sur Semantic Scholar, (consulté le ).

Voir aussi

[modifier | modifier le code]

Articles connexes

[modifier | modifier le code]

Liens externes

[modifier | modifier le code]

Bibliographie

[modifier | modifier le code]