En mathématiques, et plus précisément en algèbre générale, au sein des structures algébriques, « un module est à un anneau ce qu'un espace vectoriel est à un corps[1] » : pour un espace vectoriel, l'ensemble des scalaires forme un corps tandis que pour un module, cet ensemble est seulement muni d'une structure d'anneau (unitaire, mais non nécessairement commutatif).

Une partie des travaux en théorie des modules consiste à retrouver les résultats de la théorie des espaces vectoriels, quitte pour cela à travailler avec des anneaux plus maniables, comme les anneaux principaux. La notion de module sur un anneau fournit un cadre général et abstrait permettant de traiter les aspects purement algébriques des problèmes linéaires qu'on rencontre dans toutes les branches des mathématiques : théorie des nombres, algèbre linéaire classique, calcul tensoriel, formes différentielles, équations aux dérivées partielles, équations intégrales, géométrie algébrique, fonctions analytiques, topologie algébrique, etc.[2].

Comparaison avec la structure d'espace vectoriel

Certaines propriétés vraies pour les espaces vectoriels ne sont plus vraies pour les modules. Par exemple l'existence d'une base n'y est plus assurée, et on ne peut pas nécessairement y développer de théorie de la dimension, même dans un module engendré par un nombre fini d'éléments.

Les modules ne sont pas une généralisation inutile. Ils apparaissent naturellement dans beaucoup de situations algébriques ou géométriques. Un exemple simple est un module sur l'anneau des polynômes à une ou plusieurs indéterminées, anneau dans lequel la plupart des éléments n'ont pas d'inverse. On peut même considérer des anneaux non intègres, comme celui des fonctions infiniment différentiables sur un ouvert.

Définitions

Module à gauche, module à droite

Soit A un anneau (unitaire), dont la multiplication sera notée par simple juxtaposition.

Un A-module est la donnée (M, +, •) d'un ensemble M, d'une loi de composition interne + dans M qui fait de M un groupe abélien[3] et d'une loi externe • de A × M dans M vérifiant, pour tous éléments a et b de A et x, y de M :

Un A-module à gauche (ou encore un module à gauche sur A) est un A-module où :

Un A-module à droite est un A-module où :

La seule différence entre un A-module à gauche et un A-module à droite est donc que dans le cas d'un A-module à gauche (M, +, •), on a la relation (ab)•x = a•(b•x) (pour a et b dans A et x dans M), alors que dans le cas d'un A-module à droite, c'est (ab)•x = b•(ax). En particulier, la loi externe d'un A-module à droite (M, +, •) part de l'ensemble A × M, aussi bien que la loi externe d'un A-module à gauche (M, +, •)[5].

Avec ces définitions, les A-modules à droite sont exactement les Aop-modules à gauche, où Aop désigne l'anneau opposé de A. Cela justifie que dans la suite, on se restreigne à l'étude des modules à gauche. Si l'anneau A est commutatif (auquel cas il est égal à son opposé), les A-modules à gauche sont exactement les A-modules à droite et on dit simplement « A-module ».

Pour a dans A et x dans M, on note couramment a•x multiplicativement (par juxtaposition) ; dans le cas d'un A-module à gauche on désigne a•x par ax, de sorte que, pour a, b dans A et x dans M, on a l'égalité a(bx) = (ab)x (ce qui permet d'écrire sans ambiguïté abx) ; dans le cas d'un A-module à droite, on désigne plutôt a•x par xa, de sorte que, pour a, b dans A et x dans M, on a l'égalité (xa)b = x(ab).

On commet couramment l'abus de langage d'identifier un module à gauche (resp. à droite) (M, +, •) et l'ensemble M. Par exemple, on dit « Soient M un A-module à gauche et P une partie de M », en désignant par la première lettre M le module et par la seconde ce qu'on pourrait appeler l'ensemble sous-jacent du module.

On montre facilement que, (M, +, •) étant un A-module à gauche ou à droite, a étant un élément de A et x un élément de M, on a les relations :

On laisse le lecteur traduire ces égalités en notations multiplicatives (différentes pour les modules à gauche et les modules à droite).

Exemples

Lien avec la théorie des représentations

Le premier axiome montre que, pour , l'application est un endomorphisme du groupe M. Les trois axiomes suivants traduisent quant à eux le fait que l'application est un morphisme (unitaire) de l'anneau A dans l'anneau des endomorphismes (de groupe) de M, noté End(M).

Réciproquement, la donnée d'un morphisme d'anneaux unitaires  : A → End(M) fournit à M une structure de A-module (à gauche) via la loi . Une structure de A-module est donc équivalente à la donnée d'un morphisme A → End(M).

Un tel morphisme A → End(M) est appelé une représentation de A sur le groupe abélien M. Une représentation est dite fidèle si elle est injective. En termes de module, cela signifie que si pour tout vecteur x de M, a ∙ x = 0, alors a = 0.

Ceci est une généralisation de ce que l'on trouve dans la théorie des représentations des groupes, où l'on définit une représentation d'un groupe G sur un K-espace vectoriel comme un morphisme (unitaire) de l'algèbre du groupe G, K[G] vers End(V), autrement dit, où l'on donne une structure de K[G]-module à V.

Sous-module

Soit M un A-module à gauche, et N une partie non vide de M. On dit que N est un sous-module (à gauche) de M si les conditions suivantes sont respectées :

Autrement dit, un sous-module est une partie linéairement stable.

Exemples

Applications linéaires

Une application linéaire f entre deux modules M et N sur un même anneau A est une fonction qui conserve la structure de module, c'est-à-dire qui vérifie :

Autrement dit, une application linéaire est un morphisme de modules. Si f est bijective, on dit de plus que f est un isomorphisme. Si les modules de départ et d'arrivée M et N sont identiques, on dit que f est un endomorphisme. Si f est à la fois un endomorphisme et un isomorphisme, on dit que c'est un automorphisme.

Le noyau d'une application linéaire f est l'ensemble des éléments x de M qui vérifient f(x) = 0. C'est un sous-module de M et il est noté Ker f. On peut également définir l'image d'une application linéaire Im f = f(M) qui est un sous-module de N.

Comme dans le cas des groupes ou des anneaux, un morphisme de A-modules donne lieu à un isomorphisme , défini par

Opérations sur les modules

Produits de modules

Si on considère une famille de modules ( sur un même anneau A, on peut munir l'ensemble produit d'une structure de module en définissant les lois suivantes :

Le module ainsi défini s'appelle le module produit. Les projections sont alors des applications linéaires surjectives. Un exemple important de produit de modules est celui où tous les modules facteurs sont identiques à un même module M ; leur produit n'est alors autre que l'ensemble des applications de I dans M.

Somme directe de modules

Soit une famille de A-modules, on note leur produit . L'ensemble E des éléments de M dont toutes les composantes sauf un nombre fini sont nulles est appelé somme directe externe de la famille de modules et il est noté :

C'est un sous-module de . Dans le cas où I est fini, la somme directe E et le produit M sont évidemment confondus.

Intersection et somme de sous-modules

Si M est un module, et est une famille de sous-modules de M, on dit que la famille est en somme directe si :

Pour toute partie J finie de I, pour tout

Dans ce cas, la somme , appelée somme directe interne, est isomorphe à la somme directe externe et elle est également notée .

Produit tensoriel de modules

Article détaillé : Produit tensoriel de deux modules.

À deux modules M et N sur un anneau commutatif A est associé un A-module MAN tel que pour tout A-module F, les applications bilinéaires de M×N dans F correspondent aux applications linéaires de MAN dans F[8].

Propriétés de finitude

On dit qu'un A-module est de type fini s'il est engendré sur A par un nombre fini d'éléments. On a alors .

On dit qu'un module est de présentation finie s'il est le quotient d'un An par un sous-module de type fini. Un module de présentation finie est en particulier de type fini. La réciproque est vraie lorsque A est noethérien. Pour un module M de présentation finie, tout homomorphisme surjectif L → M avec L de type fini admet un noyau de type fini[9].

On dit qu'un A-module est libre s'il possède une base sur A (voir Module libre).

Si M est de type fini et libre, il existe alors un isomorphisme entre M et An, où n est le cardinal de la base.

Si M est de type fini, un sous-module N de M n'est pas nécessairement de type fini. Un module M tel que tout sous-module est de type fini est dit noethérien.

Notes et références

  1. Daniel Perrin, Cours d'algèbre [détail des éditions] p. 60.
  2. a et b Roger Godement, Cours d'algèbre, Paris, Hermann, (ISBN 978-2-7056-5241-8, OCLC 502437807), p. 163.
  3. L'hypothèse de commutativité de « + » est en fait redondante : elle se déduit des autres propriétés, en développant de deux façons différentes (1 + 1)•(x + y), cf. (en) Saunders Mac Lane et Garrett Birkhoff, Algebra, AMS, , 3e éd. (lire en ligne), p. 162.
  4. Mac Lane et Birkhoff 1999, p. 160, remarquent que sans ce dernier axiome, n'importe quel groupe abélien pourrait être trivialement muni d'une structure de A-module en prenant comme loi externe l'application nulle.
  5. On suit ici N. Bourbaki, Algèbre, ch. II, Paris, 1970, p. II.1-2.
  6. a et b N. Bourbaki, Algèbre, ch. II, Paris, 1970, p. II.2-3.
  7. Patrice Tauvel, Algèbre : agrégation, licence 3e année, master, Paris, Dunod, coll. « Sciences sup », , 451 p. (ISBN 978-2-10-049412-5, OCLC 934359427).
  8. Georges Gras et Marie-Nicole Gras, Algèbre fondamentale. Arithmétique.
  9. Nicolas Bourbaki, Éléments de mathématique, Algèbre commutative, I, § 2.8.

Voir aussi

Sur les autres projets Wikimedia :

Articles connexes

Bibliographie