Ten artykuł dotyczy stanu czynnościowego. Zobacz też: inne znaczenia tego słowa.
Śpiące dziecko
Śpiący kot

Sen – stan czynnościowy ośrodkowego układu nerwowego, cyklicznie pojawiający się i przemijający w rytmie dobowym, podczas którego następuje zniesienie świadomości i bezruch. Fizjologiczny sen charakteryzuje się pełną odwracalnością pod wpływem czynników zewnętrznych (w przeciwieństwie do śpiączki).

Rozmowa z Anną Fidos na temat filozofii snu

Przeciwieństwem stanu snu jest stan czuwania. Granica pomiędzy tymi stanami jest płynna u niektórych zwierząt (na przykład u żółwi).

Zapotrzebowanie na sen

Długość snu u poszczególnych zwierząt znacznie się różni. U żyraf wynosi on 2 godziny na dobę, a na przykład u nietoperzy 20 godzin na dobę. U niektórych zwierząt (pingwiny, foki, delfiny, psy) półkule mózgowe śpią na zmianę. Objawia się to zamknięciem oka przez śpiącą półkulę. Foki śpią w ten sposób, żeby wynurzać się w celu zaczerpnięcia powietrza.

Zapotrzebowanie na sen u ludzi

Zapotrzebowanie na sen u ludzi zależy od wieku, przy czym generalnie im młodsza jest osoba, tym więcej potrzebuje godzin snu. U noworodka i małego dziecka sen jest podzielony na kilka części – u osoby dorosłej natomiast taki podział raczej nie występuje.

Zapotrzebowanie na sen jest też cechą indywidualną, zależną od genów[1]. Zwykle dorosłe osoby potrzebują około 6-8 godzin pełnego snu na dobę[2]. Mózg nastolatków podlega jednak znaczniejszym zmianom i prawdopodobnie wymagają one przynajmniej 9 godzin snu na dobę, do efektywnego funkcjonowania[3].

Rekomendowana długość snu[4]
wiek zalecana ilość snu na dobę (godz.) dopuszczalna ilość snu na dobę
noworodek 0-3 m-ce 14-17 11-19
niemowlę 4-11 m-cy 12-15 10-18
małe dziecko 1-2 lata 11-14 9-16
przedszkolak 3-5 lat 10-13 8-14
dziecko w wieku szkolnym 6-13 lat 9-11 7-12
nastolatek 14-17 lat 8-10 7-11
młody dorosły 18-25 lat 7-9 6-11
dorosły 26-64 lata 7-9 6-10
osoba starsza +65 lat 7-8 5-9

Regulacja snu

Rytm zapadania w sen jest regulowany poprzez natężenie światła (rytm sen/czuwanie jest definiowany na nowo po zmianie strefy czasowej) oraz poprzez bodźce społeczne. W eksperymentach polegających na całkowitym odizolowaniu ludzi w pokojach bez okien, zegarów, telewizji, radia i telefonów, kiedy sami mogli sobie wybierać moment zasypiania i wstawania, większość badanych funkcjonowała w rytmie 24,2 godzinnym[5] (wydłużony rytm dobowy). Stosowność zaśnięcia w zależności od emocji (brak zagrożenia) i odczuwania głodu reguluje oreksyna.

W czasach, gdy ludzkość nie znała jeszcze elektryczności, ludzie chodzili spać i budzili się wraz ze Słońcem. Na większych szerokościach geograficznych podczas zimowych nocy kładli się spać bardzo wcześnie, przez co budzili się w środku nocy na 1-3 godziny, po czym zapadli w dalszy sen już do świtu. Był to tzw. sen segmentowy, gdy w trakcie nocnego przebudzenia ludzie oddawali się różnorodnym aktywnościom, począwszy od modlitwy i medytacji, poprzez pisarstwo, odwiedziny sąsiadów, a skończywszy na seksie[6].

Gdy pojawiła się elektryczność, do codziennego użytku weszły sztuczne źródła oświetlenia. Badania sugerują, że nadmierna ekspozycja na sztuczne oświetlenie, np. podczas pracy na nocnej zmianie, przyczynia się do powstawania chorób chronicznych, raka, cukrzycy, chorób serca i otyłości[7][8]. Nawet słabe światło żarówki lampki lub telefonu komórkowego może zmniejszyć sekrecję melatoniny oraz innych hormonów regulujących cykl dobowy u człowieka[9]. Doświadczenia sugerują, że niebieskie spektrum światła ma najsilniejsze działanie hamujące wydzielanie hormonów i same tylko okulary, które blokują dostęp niebieskiego światła, pomagają w zapobieganiu negatywnym skutkom zaburzeń cyklu dobowego[10]. Harwardzki newsletter medyczny z 2012 roku podaje kilka rad, w jaki sposób można zmniejszyć negatywne skutki, związane z wykorzystywaniem sztucznego oświetlenia[11]:

Podział snu

Sen dzieli się na dwie główne fazy:

  1. Sen o wolnych ruchach gałek ocznych (skrót: NREMnon-rapid eye movement); inna nazwa: sen wolnofalowy. W fazie tej pojawiają się fale delta aktywności elektrycznej mózgu.
  2. Sen REM – jest to sen o szybkich ruchach gałek ocznych (skrót: REM, z ang. rapid eye movement; inna nazwa: sen paradoksalny). W tej fazie występują najczęściej marzenia senne. Następuje w niej całkowite rozluźnienie ciała, ponieważ most, będący elementem pnia mózgu, odcina jego wpływ na mięśnie.

Ze względu na udział fal wolnych sen podzielono na 4 stadia. Wszystkie poniższe wchodzą w skład fazy NREM[12]:

Sen zaczyna się fazą NREM, prawidłowo o czasie trwania 80-100 min, po której następuje faza snu REM trwająca ok. 15 min.

U osób dorosłych tego typu cykl powtarza się 4 lub 5 razy.

Wraz z długością snu:

Obiektywnym wskaźnikiem bezsenności jest krótki czas (lub brak) najgłębszego stadium snu, wolnofalowego. Bezsenność często jest objawem nerwicy lub depresji.

W czasie snu zmienia się częstotliwość fal mózgowych. Zanikają szybsze rytmy beta i alfa, pojawiają się wolniejsze rytmy theta i delta.

Wykorzystanie niektórych rejonów mózgu jest znacznie większe podczas snu niż podczas czuwania.

Fizjologiczne znaczenie snu

Ewolucyjna rola snu w fizjologii nie jest dokładnie znana, jednakże ze względu na powszechność zjawiska przypuszcza się, że ma fundamentalne znaczenie dla układu nerwowego. Istnieje dodatnia korelacja pomiędzy rozwojem układu nerwowego a występowaniem snu. Hipotezy wyjaśniające sen obejmują:

Sen ma duże znaczenie dla pamięci i efektywnego funkcjonowania mózgu. Krótki sen szczególnie upośledza funkcjonowanie mózgu i może przyczyniać się do problemów z zapamiętywaniem oraz koncentracją[13]. Niewyspane osoby mają większe ryzyko wytworzenia fałszywych wspomnień[14]. Niewyspani ludzie, szczególnie młodzi, są średnio bardziej otyli, niż ich wyspani koledzy i koleżanki[15]. Może to mieć związek z faktem, że deprywacja snu upośledza nasze zdolności do konstruktywnego myślenia[16] oraz sprzyja podejmowaniu ryzykownych decyzji[17]. Niewyspany mózg dosłownie się kurczy[18].

Wśród nastoletnich uczniów najwyższe oceny mają zwykle ci, którzy się wysypiają. Licealiści i licealistki, którzy podczas weekendów kładą się spać dużo później, niż w czasie dni nauki, nie dość, że często mają gorsze oceny, to jeszcze skarżą się na senność, depresyjny nastrój i inne problemy[19].

Niedobór snu

Sen jest niezbędny do życia i prawidłowego przebiegu procesów psychicznych. Już jedna nieprzespana noc obniża sprawność psychofizyczną. Brak snu przez dłuższy czas powoduje szereg negatywnych efektów psychicznych i fizjologicznych:

Według badań (przeprowadzonych w Princeton University na szczurach), brak snu powoduje zaburzenia w części mózgu odpowiedzialnej za tworzenie nowych komórek[potrzebny przypis]. Badania przeprowadzone na Proceedings of the National Academy of Science wykazały, że u szczurów, które nie mogły się wyspać pojawiła się nadwyżka kortykosteronu. 2-3 tygodniowa deprywacja snu prowadzi do śmierci tych zwierząt[21].

Deprywacja snu bywa wykorzystywana jako pewien rodzaj tortur. Oskarżane o stosowanie tej techniki były KGB, wojska japońskie w czasie II wojny światowej i armia brytyjska w stosunku do członków IRA.

Rekordzistą w braku snu jest Tony Wright – poddał się on eksperymentowi medycznemu i nie spał przez 266 godzin[22].

Wśród zwierząt pasówka białobrewa jest znana ze swej zdolności obywania się bez snu nawet przez dwa tygodnie podczas migracji[23].

Efekty braku snu w określonym czasie

Skutki braku snu przez 24 godziny[22]:

Skutki braku snu przez 36 godzin[22]:

Skutki braku snu przez 48 godzin[22]:

Brak snu przez 72 godziny i dłużej[22]:

Hibernacja i estywacja

Podobnym do snu stanem jest sen zimowy (hibernacja) i sen letni (estywacja). Wiele zwierząt przesypia niekorzystną porę roku – zapadają w sen zimowy w celu oszczędzania energii lub w sen letni w czasie suszy.

Zaburzenia snu

Zaburzenia snu według ICD-10:

Zaburzenia snu według DSM-IV:

Zobacz też

Zobacz multimedia związane z tematem: Sen
Zobacz kolekcję cytatów o śnie w Wikicytatach
Zobacz w Wikiźródłach zbiór tekstów o tytule "Sen"

Przypisy

  1. Renata Pellegrino, Ibrahim Halil Kavakli, Namni Goel, Christopher J. Cardinale i inni. A Novel BHLHE41 Variant is Associated with Short Sleep and Resistance to Sleep Deprivation in Humans. „SLEEP”, 2014-01-01. DOI: 10.5665/sleep.3924. PMID: 25083013. PMCID: PMC4096202. [dostęp 2015-09-19]. [zarchiwizowane z adresu]. 
  2. Francesco P. Cappuccio, Lanfranco D'Elia, Pasquale Strazzullo, Michelle A. Miller. Sleep Duration and All-Cause Mortality: A Systematic Review and Meta-Analysis of Prospective Studies. „Sleep”. 33 (5), s. 585-592, 2010-05-01. ISSN 0161-8105. PMID: 20469800. PMCID: PMC2864873. [dostęp 2015-09-19]. 
  3. Debasis Bagchi: Global Perspectives on Childhood Obesity: Current Status, Consequences and Prevention. Academic Press, 2010-10-12, s. 167. ISBN 978-0-08-096172-9. [dostęp 2015-09-19]. (ang.).
  4. Max Hirshkowitz, Kaitlyn Whiton, Steven M. Albert, Cathy Alessi i inni. National Sleep Foundation’s sleep time duration recommendations: methodology and results summary. „Sleep Health”. 1 (1), 2015-01-01. DOI: 10.1016/j.sleh.2014.12.010. [dostęp 2015-09-19]. 
  5. James W. Kalat, Biologiczne podstawy psychologii, s. 263
  6. A. Roger Ekirch: At Day's Close: Night in Times Past. W. W. Norton & Company, 2006-10-17. ISBN 978-0-393-34458-5. [dostęp 2015-09-20]. (ang.).
  7. Cody Ramin, Elizabeth E. Devore, Weike Wang, Jeffrey Pierre-Paul i inni. Night shift work at specific age ranges and chronic disease risk factors. „Occupational and Environmental Medicine”. 72 (2), s. 100-107, 2015-02-01. DOI: 10.1136/oemed-2014-102292. ISSN 1470-7926. PMID: 25261528. PMCID: PMC4289641. [dostęp 2015-09-20]. (ang.). 
  8. X.-S. Wang, M. E. G. Armstrong, B. J. Cairns, T. J. Key i inni. Shift work and chronic disease: the epidemiological evidence. „Occupational Medicine”. 61 (2), s. 78-89, 2011-03-01. DOI: 10.1093/occmed/kqr001. ISSN 0962-7480. PMID: 21355031. PMCID: PMC3045028. [dostęp 2015-09-20]. (ang.). 
  9. George C. Brainard, John P. Hanifin, Benjamin Warfield, Marielle K. Stone i inni. Short-wavelength enrichment of polychromatic light enhances human melatonin suppression potency. „Journal of Pineal Research”. 58 (3), s. 352-361, 2015-04-01. DOI: 10.1111/jpi.12221. ISSN 1600-079X. [dostęp 2015-09-20]. (ang.). 
  10. Alexandre Sasseville, Nathalie Paquet, Jean Sévigny, Marc Hébert. Blue blocker glasses impede the capacity of bright light to suppress melatonin production. „Journal of Pineal Research”. 41 (1), s. 73-78, 2006-08-01. DOI: 10.1111/j.1600-079X.2006.00332.x. ISSN 1600-079X. [dostęp 2015-09-20]. (ang.). 
  11. Harvard Health Publications: Blue light has a dark side – Harvard Health. [dostęp 2015-09-20].
  12. Janusz Rybakowski, Stanisław Pużyński, Jacek Wciórka: Psychiatria. Podstawy psychiatrii. T. 1. Wrocław: Elsevier, Urban & Parner, 2010. ISBN 978-83-7609-102-0.
  13. Ted Abel, Robbert Havekes, Jared M. Saletin, Matthew P. Walker. Sleep, Plasticity and Memory from Molecules to Whole-Brain Networks. „Current Biology”. 23 (17), s. R774-R788, 2013-09-09. DOI: 10.1016/j.cub.2013.07.025. ISSN 0960-9822. PMID: 24028961. PMCID: PMC4263505. [dostęp 2015-09-19]. (ang.). 
  14. Steven J. Frenda, Lawrence Patihis, Elizabeth F. Loftus, Holly C. Lewis i inni. Sleep Deprivation and False Memories. „Psychological Science”. 25 (9), s. 1674-1681, 2014-09-01. DOI: 10.1177/0956797614534694. ISSN 0956-7976. PMID: 25031301. [dostęp 2015-09-19]. (ang.). 
  15. S. Taheri. The link between short sleep duration and obesity: we should recommend more sleep to prevent obesity. „Archives of Disease in Childhood”. 91 (11), s. 881-884, 2006-11-01. DOI: 10.1136/adc.2005.093013. ISSN 1468-2044. PMID: 17056861. PMCID: PMC2082964. [dostęp 2015-09-19]. (ang.). 
  16. William D.S. Killgore, Ellen T. Kahn-Greene, Erica L. Lipizzi, Rachel A. Newman i inni. Sleep deprivation reduces perceived emotional intelligence and constructive thinking skills. „Sleep Medicine”. 9 (5), 2008-01-01. DOI: 10.1016/j.sleep.2007.07.003. [dostęp 2015-09-19]. 
  17. Benjamin S. Mckenna, David L. Dickinson, Henry J. Orff, Sean P. A. Drummond. The effects of one night of sleep deprivation on known-risk and ambiguous-risk decisions. „Journal of Sleep Research”. 16 (3), s. 245-252, 2007-09-01. DOI: 10.1111/j.1365-2869.2007.00591.x. ISSN 1365-2869. [dostęp 2015-09-19]. (ang.). 
  18. Claire E. Sexton, Andreas B. Storsve, Kristine B. Walhovd, Heidi Johansen-Berg i inni. Poor sleep quality is associated with increased cortical atrophy in community-dwelling adults. „Neurology”. 83 (11), s. 967-973, 2014-09-09. DOI: 10.1212/WNL.0000000000000774. ISSN 0028-3878. PMID: 25186857. PMCID: PMC4162301. [dostęp 2015-09-19]. (ang.). 
  19. Amy R. Wolfson, Mary A. Carskadon. Sleep Schedules and Daytime Functioning in Adolescents. „Child Development”. 69 (4), s. 875-887, 1998-08-01. DOI: 10.1111/j.1467-8624.1998.tb06149.x. ISSN 1467-8624. [dostęp 2015-09-19]. (ang.). 
  20. a b c Sen - jaki ma wpływ na codzienne funkcjonowanie
  21. Rechtschaffen, A. i in., Physiological correlates of prolonged sleep deprivation in rats., Science 221, 1983, s. 182-184.
  22. a b c d e Eksperyment medyczny: Bezsenność. „Świat Wiedzy”, s. 102-107, wrzesień 2011. ISSN 2083-5825. 
  23. Richard Martin: It's Wake-Up Time. Wired, 2003-11-01. [dostęp 2010-07-28]. (ang.).

Bibliografia

Linki zewnętrzne

Polskojęzyczne
Anglojęzyczne