Plastične replike hrane u Japanu
Kućni predmeti napravljeni od različitih tipova plastike
IUPAC definition
Generički termin koji se koristi u slučaju polimernih materijala koji mogu da sadrže druge supstance
da bi se poboljšala performanca i/ili redukovali troškovi.

Napomena 1: Upotreba ovog termina umesto polimer je izvor zabune i stoga se ne preporučuje.

Napomena 2: Ovaj termin se koristi u polimerskom inženjerstvu materijala obično u smislu da
se može obraditi putoka protoka.[1]

Plastika ili plastični materijal predstavljaju umetne materijale proizvedene od sintetskih ili polusintetskih smola i različitih dodataka (punila, omekšivača, stabilizatora i pigmenata) koji se u toku prerade nalaze bar povremeno u plastičnom stanju.[2][3] Plastike su tipično organski polimeri sa visokom molekulskom masom, mada one često sadrže druge supstance. One su obično sintetičke, najčešće izvedene iz petrohemikalija, mada su mnoge delom prirodne.[4] Plastičnost je opšte svojstvo svih molekula koji imaju sposobnost da se nepovratno deformišu bez pucanja, mada do toga dolazi u toj meri kod ove klase polimera podesnih za oblikovanje da je ta sposobnost naglašena u njihovom imenu.

Usled njihove relativno niske cene, lakoće proizvodnje, mnogostranosti, i nepropustivosti za vodu, plastike se koriste u enormnom i ekspandirajućem opsegu proizvoda, od spajalica do svemirskih brodova. One se već zamenile mnoge tradicionalne materijale, kao što su drvo, kamen, rogovi i kosti, koža, papir, metal, staklo, i keramika, u velikom broju oblika njihove ranije upotrebe. Plastične mase se prerađuju valjanjem u folije, istiskivanjem pod pritiskom, ubrizgivanjem, pasiranjem, itd. Zbog svojih mehaničkih svojstava i mogućnosti oblikovanja plastične mase su potisle mnoge druge materijale i njihova je industrija u stalnom porastu. U razvijenim zemljama, oko jedne trećine proizvedene plastike se koristi za pakovanje, a jedna trećina nalazi primenu u građevinarstvu za izradu cevi koje se koriste u vodovodnim instalacijama, ili za izradu vinilnih pokrivnih oplata.[5] Ostatak se koristi za izradu automobila (do 20% plastike[5]), nameštaja, i igrački.[5] U zemljama u razvoju, taj odnos može da bude različit - na primer, po nekim izveštajima 42% Indijske potrošnje odlazi na materijale za pakovanje.[5] Plastike nalaze mnoštvo oblika primene u polju medicine, što obuhvata polimerne implante. Ime polja plastične hirurdije nije proisteklo iz upotrebe plastičnih materijala, nego is opšijeg značenja reči plastičnost u smislu sposobnosti promene oblika.

Prva potpuno sisntetička plastika je bio bakelit, koju je izumeo Leo Baekeland u Njujorku 1907. godine[6], koji je skovao termin 'plastika'.[7] Mnogi hemičari su doprineli nauci o materijalu plastike, uključujuči nobelovca Hermana Staudingera, koji se naziva „ocem hemija polimera“" i Hermana Marka, koji je poznat kao „otac fizike polimera“.[8] Uspeh i dominancija plastike počevši od ranog 20. veka doveli su do brojnih problema očuvanja životne sredine zbog njene spore dekompozicije nakon što se odbaci kao smeće. Postojanost je direktna posledica strukture plastike karakterisane prisustvom velikih molekula. Pri kraju 20. veka, jedan od pristupa rešavanju problema je široko zastupljeno nastojanje da se reciklira plastika.

Plastike se mogu se podeliti u dve glavne grupe: termoplastični materijali i termoreaktivni materijali ili duroplasti.

Karakteristike plastike

Različitosti među sintetskim polimerima, njihove najraznovrsnije karakteristike, ključne su za njihov uspjeh. Polimerne tvari se rijetko upotrebljavaju u izvornom obliku, već im se prethodno dodaju razni dodatci (aditivi) koji bitno poboljšavaju jedno ili više njihovih svojstava, pa se tako dobivaju tehnički uporabljivi polimerni materijali.

Tako različiti u svojoj upotrebi, zajedinička im je:

Plastika kao materijal odgovara na mnoge funkcionalne potrebe i čini mogućim ono što čovjek treba ili želi...

Etimologija

Reč plastika je izvedena iz grčke reči πλαστικός (plastikos) sa značenjem „imati sposobnost menjanja oblika ili oblikovanja“, od πλαστός (plastos) sa značenjem „oblikovan“.[9][10] Ona se odnosi na savitljivost, ili plastičnost materijala tokom proizvodnje, što mu omogućava da bude izliven, presovan, ili ekstrudovan u mnoštvo oblika kao što su filmovi, vlakna, ploče, cevi, boce, kutije, i niz drugih.

Široko korištena reč plastika nije u potpunosti analogna sa tehničkim pridevom plastičan, koji se koristi za opisivanje bilo kog materijala koji podleže permanentnoj promeni oblika (plastičnoj deformaciji) kad se istegne izvan izvesne tačke. Aluminijum koji je drobljen ili kovan, na primer, ispoljava plastičnost u tom smislu, mada on nije plastičan u običajenom smislu reči. U kontrastu s tim, u njihovim finalnim oblicima, neke plastike pucaju umesto da se deformišu i stoga nisu plastične u tehničkom smislu.

Uobičajene plastike

Stolica sa polipropilenskim sedštem i naslonom

Plastike specijalne namene

Vidi takođe: Plastike visoke performance

Istorija

Razvoj plastike je evoluirao od upotreve prirodnih plastičnih materijala (e.g., žvakaća guma, šelak) do upotrebe hemijski modifikovanih, prirodnih materijala (e.g., guma, nitroceluloza, kolagen, galalit) i konačno do kompletno sintetičkih molekula (e.g., bakelit, epoksi, polivinil hlorid). Rane plastike su bile biorazgradivi materijali kao što su protein jajeta i krvi, koji su organski polimeri. Godine 1600 p.n.e, Mezoamerikanci su koristili prirodnu gumu za izradu lopti, traka, i figurica.[5] Tretirani goveđi rogovi su korišteni kao prozori za fenjere u Srednjem veku. Materijali koji oponašaju svojstva rogova su razvijeni tretiranjem mlečnih proteina (kazeina) ceđom.

Tokom 1800-tih, sa razvojem industrijske hemije tokom Industrijske revolucije, formirano je mnoštvo novih materijala. Razvoj plastika je isto tako bio ubrzan otkrićem Čarls Gudjirovog procesa vulkanizacije kojim se formiraju termootporni materijali od prirodne gume.

Parkesin se smatra prvom veštačkom plastikom. Taj plastični materijal je patentirao Aleksandar Parkes iz Birmingema, UK 1856. godine.[11] On je predstavljen na Velikoj međunarodnoj izložvi 1862. godine u Londonu.[12] Parkesin je osvojio bronzanu medalju na Svetskom sajmu u Londonu 1862. Parkesin je formira od celuloze (glavne komponente biljnih ćelijskih zidova) treatirane azotnom kiselinom kao rastvaračom. Proizvod procesa (široko poznat kao celulozni nitrat ili piroksilin) može da bude rastvoren u alkoholu. On otvrdnjava u transparentni i elastični materijal, koji se može oblikovati zagrevanjem.[13] Inkorporiranjem pigmenta u produkt, može se ostvariti da podseća na slonovaču.

Godine 1897. u Hanoveru je Wilhelm Krische, vlasnik nemačke prese za masovno štampanje, radio na razvoju alternativnih tipova štamparskih šablona. Rezultirajuća plastika, koja je nalikovala materijalu rogova, je bila izrađena od mlečnog proteina kazeina. Ovaj materijal je razvijen u kooperaciji sa austrijskim hemičarom (Fridrihom) Adolfom Spitlerom (1846–1940). Krajnji polimer nije imao željena svojstva.[14] Godine 1893, francuski hemičar August Trilat je otkrio način da pretvori kazein u nerastvorni materijal putem potapanja u formaldehid.

Početkom 20. veka razvijen je bakelit, kao prva potpuno sintetička termoplastika. Za njegov razvoj je zaslužan belgijski hemičar Leo Baekeland. Materijal je pripremljen polazeći od fenola i formaldehida.

Nakon Prvog svetskog rata, poboljšanja hemijske tehnologije su dovela do eksplozije novih formi plastike, dok je masovna proizvodnja počela tokom 1940-tih i 1950-tih (tokom Drugog svetskog rata).[15] Među najranijim primerima talasa novih polimera su polistiren (PS), koji je prvi proizveo BASF tokom 1930-tih,[5] i polivinil hlorid (PVC), koji je otkriven 1872, mada je komercijalna proizvodnja počela tokom kasnih 1920-tih.[5] Godine 1923. je preduzeće Durite Plastics Inc. počelo sa proizvodnjom fenolno furfuralnih rezina.[16] Istraživači Reginald Gibson i Eric Fawcett iz kompanije Imperial Chemical Industries (ICI) su otkrili polietilen 1933. godine.[5]

Giulio Natta je 1954. godine otkrio polipropilen, a proizvodnja je počela 1957.[5] Kompanija Dow Chemical je 1954. godine izumela prošireni polistiren, koji je korišten za izolaciju zgrada, i za izradu ambalaže i posuđa sa jednokratnom upotrebom.[5]

Osoblju preduzeća Calico Printers' Association iz Ujedinjenog Kraljevstva se pripisuje otkriće polietilen tereftalata (PET) 1941. godine. Tehnologija je licencirana kompaniji DuPont za SAD i ICI za druge zemlje. Ovaj materijal je jedan od malobrojnih tipova plastike koji se mogu koristiti kao zamena stakla u mnogim okolnostima, što je dovelo do njegove široke upotrebe za izradu boca u Evropi.[5]

Sastav

Plastike su organski polimeri. Najveći broj tih polimera je baziran na lancima koji se sastoje samo od atoma ugljenika ili su prisutni i kiseonik, sumpor, ili azot. Osnova je deo lanca na glavnom „putu“ koji povezuje veliki broj ponavljajućih jedinica. Da bi se prilagodila svojstva plastike, različite molekulske grupe se „kače“ na osnovu (one su obično deo monomera od pre nego što su monomeri bili povezani u polimerni lanac). Struktura tih bočnih lanaca utiče na svojstva polimera. Putem finog podešavanje ponavljajućih jedinica molekulske strukture mogu se menajti svojsta plastike.

Većina plastika sadrži smešu drugih organskih ili neorganskih jedinjenja. Količina aditiva se kreće u opsegu od nula procenata (za jednostavne polimere koji se koriste kao ambalaža za hranu) do više od 50% kod pojedinih elektronskih aplikacija. Prosečni sadržaj aditiva je 20% po težini polimera[17].

Najveći broj kontroverzi vezanih za plastiku je vezan za aditive.[18] Organokalajna jedinjenja su posebno toksična.[19]

Punioci

Punioci poboljšavaju performance i/ili umanjuju proizvodne troškove. Stabilizujući aditivi obuhvataju antipirene kojima se snižava zapaljivost materijala. Mnoge plastike sadrže punioce, koji su relativno inertni i jeftini materijali, te se njima pojeftinjuje produkat po jedinici težine.

Tipični punioci su mineralnog porekla, e.g., kreda. Neki punioci su hemijski aktivniji i nazivaju se pojačavajučim agensima. Drugi punioci uključuju cink oksid, drveno brašno, prašinu slonovače, celulozu i skrob.[20]

Plastifikatori

Pošto su mnogi organski polimeri suviše kruti za specifične primene, oni se blendiraju sa plastifikatorima (koji su najveća grupa aditiva[19]), uljastim jedinjenjima koja poboljšanu reološka svojstva.

Boje

Jedinjenja koja daju boju su često korišćeni aditivi. Ona u neznatnoj meri doprinose težini materijala.

Klasifikacija

Plastike se obično klasifikuju po njihovoj hemijskoj strukturi osnove polimera i bočnim lancima. Neke od važnih grupa u tim klasifikacijama su akrilna, poliestarska, silikonska, poliuretanska, i halogenisane plastike. Plastike isto tako mogu da se klasifikuju po hemijskom procesu koji se koristi za njihovu sintezu, kao što je kondenzacija, poliadicija, i unakrsno-povezivanje.[21]

Termoplastike i termički polimeri

Postoje dva tipa plastike: termoplastike i termoreaktivni polimeri. Termoplastike su plastike koje ne podležu hemijskoj promeni u svom sastavu kad se zagrevaju i mogu se otopiti više puta. Primeri takvih plastika su polietilen, polipropilen, polistiren i polivinil hlorid.[22] Termoplastike se obično nalaze u opsegu od 20,000 do 500,000 amu, dok se za termoreaktivne plastike uzima da imaju beskonačnu molekulsku težinu. Ti lanci su sačinjeni od mnoštva ponavljajućih molekulskih jedinica, izvedenih iz monomera; svaki polimerni lanac ima nekoliko hiljada ponavljajućih jedinica.

Termoreaktivni polimeri se mogu jednom istopiti i poprimiti oblik; nakon toga oni očvrsnu, i ostaju čvrsti. U termoreaktivnom procesu dolazi do hemijske reakcije koja je nepovratna. Vulkanizacija gume je termoreaktivni prices. Pre zagrevanja sa sumporom, poliizopren je lepljiv, donekle tekući materijal, dok je nakon vulkanizacije produkat čvrst.

Druge klasifikacije

Druge klasifikacije su bazirane na svostvima koja su relevantna za proizvodnju ili za dizajn produkta. Primeri takvih klasa su termoplastika i termoreaktivna plastika, elastomer, strukturna, biorazgradiva, i elektrino provodna. Plastike se takođe mogu klasifikovati po raznim fizičkim svojstvima, kao što su gustina, zatezna čvrstoća, templeratura staklene tranzicije, i otpornosti na razne hemijske produkte.

Biorazgradivost

Glavni članak: Biorazgradiva plastika

Biorazgradive plastike se razlažu (degradiraju) nakon izlaganja svetlosti (e.g., ultraviolentnoj radijaciji), vodi ili vlazi, bakterijama, enzimima, habanju vetrom, i u nekim slučajevima se dejstvo glodara, štetočina, ili napad insekata takođe smatra oblikom biodegradacije ili degradacije životne sredine. Za neke oblike degradacije je neophodno da je plastika izložena na površini, dok su drugi oblici efektivni jedino ako postoje određeni uslovi u deponiji ili u sistemu za kompostiranje. Skrobni prah se meša sa plastikom kao punilac da bi se olakšala degradacija, mada to još uvek ne dovodi do kompletne razgradnje plastike. Sprovode se aktivna istraživanja na genetičkom dizajnu bakterija koje sintetišu kompletno biorazgradivu plastiku, ali je takav materijal, kao što je Biopol, za sad skup.[23] Razvijeni su biorazgradivi aditivi kojima se uvećava brzina biodegradacije plastike.

Prirodna vs sintetička

Glavni članak: Bioplastika

Većina plastika se proizvodi iz petrohemikalija. Zbog ograničenih petrohemijskih rezervi i pretnje od globalnog zagrevanja, došlo je do razvoja bioplastika. Bioplastike se prvenstveno prave od obnovljivih biljnih materijala kao što su celuloza i skrob.[24]

U poređenju sa globalnom potrošnjom fleksibilne ambalaže, koja se procenjuje na 12,3 miliona tona/godišnje, procenjuje se da je globalni proizvodni kapacit biorazgradivih materijala na nivou od 327.000 tona/godišnje.[25][26]

Kristalina vs amorfna

Neke plastike su delimično kristalne, a delimično amorfne u pogledu molekulske strukture, te one imaju tačku topljenja (temperature na kojoj se provlačne intermolekularne sile prevazilaze), i jednu ili više staklenih tranzicija (temperatura iznad kojih se mera lokalizovane molekulske fleksibilnosti znatno povećana). Takozvane polukristalne plastike obuhvataju polietilen, polipropilen, poli (vinil hlorid), poliamide (najlone), poliestre i neke poliuretane. Mnoge plastike su kompletno amorfone, kao što je polistiren i njegovi kopolimeri, poli (metil metakrilat), i sve termoreaktivne plastike.

Reference

  1. „Terminology for biorelated polymers and applications (IUPAC Recommendations 2012)”. Pure and Applied Chemistry 84 (2): 377–410. 2012. DOI:10.1351/PAC-REC-10-12-04. Arhivirano iz originala na datum 2015-03-19. Pristupljeno 2015-06-23. 
  2. Erik Lokensgard 2008
  3. Christopher Lefteri (2008)). Plastics Handbook. RotoVision. ISBN 978-2888930020. 
  4. Life cycle of a plastic product Arhivirano 2010-03-17 na Wayback Machine-u. Americanchemistry.com. Retrieved on 2011-07-01.
  5. 5,00 5,01 5,02 5,03 5,04 5,05 5,06 5,07 5,08 5,09 5,10 Andrady AL, Neal MA (July 2009). „Applications and societal benefits of plastics”. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364 (1526): 1977–84. DOI:10.1098/rstb.2008.0304. PMC 2873019. PMID 19528050. 
  6. American Chemical Society National Historic Chemical Landmarks. „Bakelite: The World’s First Synthetic Plastic”. Pristupljeno 23 February 2015. 
  7. Fantastic Recycled Plastic: 30 Clever Creations to Spark Your Imagination, by David Edgar, Robin A. Edgar, p11
  8. Polymer Chemistry: Introduction to an Indispensable Science, by David M. Teegarden, pp.58-59
  9. Plastikos, Henry George Liddell, Robert Scott, A Greek-English Lexicon, at Perseus. Perseus.tufts.edu. Retrieved on 2011-07-01.
  10. Plastic, Online Etymology Dictionary. Etymonline.com. Retrieved on 2011-07-01.
  11. UK Patent office (1857). Patents for inventions. UK Patent office. str. 255. 
  12. Stephen Fenichell, Plastic: The Making of a Synthetic Century, HarperBusiness, 1996, ISBN 0-88730-732-9 p. 17
  13. „Dictionary – Definition of celluloid”. Websters-online-dictionary.org. Pristupljeno 2011-10-26. 
  14. Trimborn, Christel. „Jewelry Stone Make of Milk”. GZ Art+Design. 
  15. Thompson RC, Swan SH, Moore CJ, vom Saal FS (July 2009). „Our plastic age”. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364 (1526): 1973–6. DOI:10.1098/rstb.2009.0054. PMC 2874019. PMID 19528049. 
  16. „Historical Overview and Industrial Development”. International Furan Chemicals, Inc.. Pristupljeno 4 May 2014. 
  17. Disposable Products Manufacturing Handbook. NIIR project consultancy services. 2014. ISBN 9381039321. 
  18. Hans-Georg Elias "Plastics, General Survey" in Ullmann's Encyclopedia of Industrial Chemistry, 2005, Wiley-VCH, Weinheim. DOI:10.1002/14356007.a20_543
  19. 19,0 19,1 Teuten EL, Saquing JM, Knappe DR, et al. (July 2009). „Transport and release of chemicals from plastics to the environment and to wildlife”. Philos. Trans. R. Soc. Lond., B, Biol. Sci. 364 (1526): 2027–45. DOI:10.1098/rstb.2008.0284. PMC 2873017. PMID 19528054. 
  20. Seymour, Raymond Benedict; Deaning, Rudolph D. (1987). History of Polymeric Composites. VSP. str. 374. 
  21. Classification of Plastics Arhivirano 2007-12-15 na Wayback Machine-u. Dwb.unl.edu. Retrieved on 2011-07-01.
  22. Composition and Types of Plastic Inforplease website
  23. Biodegradation of plastic bottles made from Biopol in an aquatic ecosystem under in situ conditions, accessed March 2009 (login required)[mrtav link]. Springerlink.com. Retrieved on 2011-07-01.
  24. National Non-Food Crops Centre. Biochemical Opportunities in the UK, NNFCC 08-008 Arhivirano 2011-07-20 na Wayback Machine-u
  25. National Non-Food Crops Centre. NNFCC Renewable Polymers Factsheet: Bioplastics
  26. Plastics News Arhivirano 2008-05-13 na Wayback Machine-u. Plastics News. Retrieved on 2011-07-01.

Literatura

Vanjski linkovi

Plastika na Wikimedijinoj ostavi
 Nedovršeni članak Plastika je u začetku. Možete pomoći Wikipediji tako da ga proširite.