An example of congruence. The two triangles on the left are congruent, while the third is similar to them. The last triangle is neither similar nor congruent to any of the others. Note that congruence permits alteration of some properties, such as location and orientation, but leaves others unchanged, like distance and angles. The unchanged properties are called invariants.

In geometry, two figures or objects and are congruent (written as )[1] if they have the same shape and size, or if one has the same shape and size as the mirror image of the other.[2]

More formally, two sets of points are called congruent, if and only if one can be transformed into the other by isometry.[3] For isometry, rigid motions are used.

This means that two geometrical figures are congruent if one object can be repositioned, rotated or reflected—but not resized—so that it coincides exactly with the other object.[4] if one can be moved or rotated so that it fits exactly where the other one is, then the two figures are congruent. If one of the object has to change its size, then the two objects are not congruent: they are just called similar.

As an example, two distinct plane figures on a piece of paper are congruent if we can cut them out and then match them up completely (turning the paper over here is permitted).

Congruent polygons are polygons that if you fold a regular polygon in half that is a congruent polygon.[needs to be explained]

Examples

[change | change source]

Tests for congruence

[change | change source]

Triangles

[change | change source]

How to obtain new congruent shapes

[change | change source]

The following are a few rules to make new shapes congruent to the original one:

The relationship, that a shape is congruent to another shape, has three famous properties:

For example, if the shift above is not a proper shift, but only a shift making a motion of length zero. Or, similarly, if the rotation above is not a proper rotation, but only a rotation of angle zero.
For example, if we shift back, or rotate back, or mirror back the new shape to the original one, then the original shape is congruent to the new one.
For example, if we apply first a shift, and then a rotation, then the resulting new shape is still congruent to the original one.

The famous three properties, reflexivity, symmetry and transitivity, together make the notion of equivalence. Hence, the property congruence is one sort of equivalence relation between shapes of a plane.

[change | change source]

References

[change | change source]
  1. "Compendium of Mathematical Symbols". Math Vault. 2020-03-01. Retrieved 2020-09-21.
  2. Clapham, C.; Nicholson, J. (2009). "Oxford Concise Dictionary of Mathematics, Congruent Figures" (PDF). Addison-Wesley. p. 167. Retrieved September 1, 2013.
  3. Weisstein, Eric W. "Geometric Congruence". mathworld.wolfram.com. Retrieved 2020-09-21.
  4. "Congruent". www.mathsisfun.com. Retrieved 2020-09-21.