Diagram av en zinkanod i en galvanisk cell. Den yttre konventionella strömriktningen är riktad in mot komponenten och elektroden är således en anod

Anod är den elektrod där en yttre ström går in i en komponent.[1][2]

Ett undantag är halvledardioder där anoden är fixerad till den p-dopade sidan av diodens pn-övergång.[3][4] För många dioder sammanfaller undantaget med den generella definitionen, men inte för exempelvis zenerdiod, avalanchediod eller fotodiod där strömmen i normalt driftläge går in på den n-dopade sidan (som kallas diodens katod) av diodens pn-övergång.

Den yttre elektronledaren är vanligtvis av metall [1] men kan även vara av grafit. Det behövs även en motelektrod där strömmen kan lämna komponenten och denna elektrod kallas katod. Strömmen som passerar komponenten kan ledas genom vakuum, joniserad gas, halvledare eller elektrolyt. Elektrolyten kan vara en vattenlösning av salt, syra eller bas men kan även vara en jonledande polymer, saltsmälta eller fastoxid. Exempel på det senare är yttriumstabiliserad zirkoniumdioxid där syrejoner är strömmens laddningsbärare.

Anod och katod används dels om energiförbrukande komponenter, exempelvis vakuumdioder, dels om komponenter som avger energi såsom en galvanisk cell. För en vakuumdiod är anoden den positiva elektroden, medan för en galvanisk cell blir den negativa elektroden anod. Anod (och även katod) definieras utifrån den yttre strömmens riktning, inte komponentens polaritet.

Det är en missuppfattning att anoden alltid är positiv. En generell minnesregel kan vara den engelska ACID (Anode, Current Into Device). Den svenska minnesregeln PANK (Positiv Anod, Negativ Katod) har begränsad användning och gäller bara energiförbrukande komponenter men inte för en galvanisk cell som avger energi (det som vardagligt kallas batteri). ACID-reglen gäller inte generellt för halvledardioder (se nedan under 3.1.2) som har en egen definition/konvention för anod.

I en elektrokemisk cell orsakar strömmen en oxidation vid anoden.[5] Detta gäller för såväl en elektrolytisk cell vid den positiva polen som för en galvanisk cell vid den negativa polen.

Etymologi

Ordet anod introducerades av Michael Faraday när han behövde nya namn för att skriva färdigt en avhandling om elektrolys, en då nyligen upptäckt process. Faraday hade konsulterat William Whewell 1834 som myntade[6] ordet anod. Vid namngivningen av elektroderna utgick Faraday från en elektrolytisk cell som är så orienterad att strömmen går in i öster och ut ur cellen i väster. Strömmens riktning blir då densamma som en sådan tänkt ström har längs en latitud och som skapar ett magnetfält med samma riktning som jordens magnetfält. Faraday menade att som minneshjälp har strömmens bana samma riktning som solen tycks röra sig – upp i öster och ner i väster.[2] Anod kommer från det grekiska ordet ἄνοδος ánodos "väg uppåt", "återväg"; av aná "upp", "tillbaka" och hodós "bana", "väg".

Notering om strömmens riktning

Enligt konvention är den elektriska strömmens riktning den samma som för positiva laddningar. Om strömmen utgörs av negativa laddningar, rör sig dessa i motsatt riktning. Inne i en vakuumdiod i drift frigörs elektroner vid katoden och vandrar i spänningsfältet till anoden och därefter till strömkällan. Eftersom elektronerna har negativa laddningar är den konventionella strömriktningen åt motsatt håll – från strömkällan till vakuumdiodens anod och vidare inne i dioden till katoden och slutligen, via en yttre ledare, tillbaka till strömkällan.

Exempel på elektriska komponenter eller system med anod

Elektronikkomponenter

Elektronrör

Schematisk bild av triodrör

Elektronrör är en samlingsbeteckning för vakuumrör med två eller flera elektroder varav minst en är anod.

Halvledarkomponent

Halvledardioder leder idealt elektrisk ström i bara en riktning, från anod till katod. Halvledardioder finns i olika utföranden och med olika karaktäristik. Schemasymbolens pil anger framriktningen. I backriktningen kan halvledardioder leda en mycket liten ström men konventionen (undantag från den generella definitionen av anod) är de behåller beteckningen anod för den elektrod där strömmen går in (den p-dopade sidan av pn-övergången) när dioden leder i framriktningen. Konventionen gäller även för zenerdioden som i sin huvudanvändning börjar leda en markant ström när en definierad spänning i backriktningen uppnås. Så här ser några symboler ut för olika dioder med beteckning för anod (det engelska ordet Anode används).

Diod Fotodiod Zenerdiod

Lysdiod med angivande av anod (+), dess symbol samt praktiskt utförande
Principbild av hur Organisk LED är uppbyggd
1 katod, 2 emitterskikt, 3 rekombinering av laddningsbärare med fotonemmission, 4 hålledningsskikt, 5 anod

Elektrokemiska komponenter

En elektrokemisk komponent kännetecknas av två elektroder (anod och katod) och mellanliggande elektrolyt samt att kemiska redoxreaktioner kan ske. Vid strömgenomgång sker en oxidation av anoden alternativt av ämnen i elektrolyten vid anoden. Samtidigt sker reduktion vid katoden. Strömmen genom elektrolyten transporteras av joner.[1]

Elektrolytiska celler

Cell som tillförs elektrisk ström kallas elektrolytisk cell och finns i många utföranden. Den positiva elektroden är anod.

Galvaniska celler

Cell som kan alstra elektrisk ström kallas galvanisk cell. Sådana finns i många olika utföranden. Anoden är den negativa polen. I laddbara batterier (ackumulatorer) växlar elektrodernas funktion (anod respektive katod) allt efter driftsätt (urladdning eller laddning).

Primärceller

Dessa celler innehåller primärt kemiska ämnen som kan omvandlas och avge elektrisk energi. Här ingår engångsbatterier men inte laddbara batterier som listas nedan under sekundärceller.

Tennoxiden + titanoxiden + färgämnet utgör anoden.
Färgämnet exciteras av ljus och överför energin till titandioxiden som lämnar en elektron till tennoxiden som är förbunden med en yttre elektrisk ledare (elektroner ut betyder detsamma som ström in). Det finns fotoelektriska celler med andra aktiva material/ämnen som fungerar enligt samma allmänna princip.
Avlagringskorrosion sker vid ett snarlikt förhållande där icke-metalliska avlagringar skapar en syrefattig miljö under avlagringen.[13]
Metall som till en del doppas ner i vatten kan drabbas av vattenlinjekorrosion som är ett angrepp strax under vattenytan. Angreppet beror på att koncentrationen av löst syre vid vattenlinjen är högre än längre ner.
Sekundärceller

Sekundärceller är galvaniska celler där elektrodreaktionerna kan vändas.[14] De kan laddas upp på nytt det vill säga de är laddbara batterier. Vid laddning är den positiva elektroden anod medan det vid strömuttag är den negativa elektroden anod.

Elektroder som inte kallas anod

Referens- och mätelektroder är elektrokemiska komponenter utformade för att ge en definierad elektrisk potential. Idealt tillförs eller lämnar komponenterna ingen ström och därför används inte begreppen anod eller katod om dessa elektroder. Elektroderna finns i olika utföranden, för exempel se standardvätgaselektrod, kalomelelektrod, pH-glasmembranelektrod, jonselektiv elektrod och redoxelektrod.

Se även

Referenser

Noter

  1. ^ [a b c] Einar Mattsson, Elektrokemi och korrosionslära, 2:a omarbetade upplagan, 2:a tryckningen, sidan 14, Utgivare: Korrosionsinstitutet Stockholm, år 1977, Bulletin Nr 56
  2. ^ [a b] Faraday, Michael, 1834 ”Experimental Researches in Electricity. Seventh Series” paragraf 11 stycke 663. Philosophical Transactions of the Royal Society 124 (1)[1] läst 2019-07-24
  3. ^ Crecraft, David; Stephen Gergely (2002). Analog Electronics: Circuits, Systems and Signal Processing. Butterworth-Heinemann. sida. 110, läst 2019-07-24. ISBN 0-7506-5095-8[2]
  4. ^ Lowe, Doug (2013). "Electronics Components: Diodes". Electronics All-In-One Desk Reference For Dummies. John Wiley & Sons. läst 2019-07-24 [3]
  5. ^ Einar Mattsson, Elektrokemi och korrosionslära, 2:a omarbetade upplagan, 2:a tryckningen, sidan 15, Utgivare: Korrosionsinstitutet Stockholm, år 1977, Bulletin Nr 56
  6. ^ från enwp Anode som anger Ross, S (1961). ”Faraday Consults the Scholars: The Origins of Terms of Electrochemistry”. Notes and Records of the Royal Society of London (1938–1996) 16 (2):187–220. doi:10.1098/rsnr.1961.0038 läst 2015-02-28 .
  7. ^ Projekt Runeberg; Teknisk tidskrift Elektoteknik Häfte 4 april 1934 sidor 49–54 samt 69–76; Uno Lamm, ”Om kvicksilverströmbrytarens fysik och teknik”; artikelns sida 49 börjar vid https://runeberg.org/tektid/1934e/0051.html läst 2015-02-10
  8. ^ Faraday, Michael, 1834 ”Experimental Researches in Electricity. Seventh Series” paragraf 11 stycke 664. Philosophical Transactions of the Royal Society 124 (1): doi:10. 1098/rstl. 1834.0008 (referens hämtad från enwp Anode läst 2015-02-28)
  9. ^ Gunnar Hägg, Allmän och oorganisk kemi, sidan 408 Almqvist & Wiksells, 1963
  10. ^ Gunnar Hägg, Allmän och oorganisk kemi, sidan 701, Almqvist & Wiksells, 1963
  11. ^ Einar Mattsson, Elektrokemi och korrosionslära, 2:a omarbetade upplagan, 2:a tryckningen, sidan 78, Utgivare: Korrosionsinstitutet Stockholm, år 1977, Bulletin Nr 56
  12. ^ [a b] Einar Mattsson, Elektrokemi och korrosionslära, 2:a omarbetade upplagan, 2:a tryckningen, sidor 71–72, Utgivare: Korrosionsinstitutet Stockholm, år 1977, Bulletin Nr 56
  13. ^ Einar Mattsson, Elektrokemi och korrosionslära, 2:a omarbetade upplagan, 2:a tryckningen, sidor 47–50, Utgivare: Korrosionsinstitutet Stockholm, år 1977, Bulletin Nr 56
  14. ^ Gunnar Hägg, Allmän och oorganisk kemi, sidan 413 16h, Almqvist & Wiksells, 1963
  15. ^ Why do some authors write anode (or cathode) in place of negative (or positive) electrode when reporting rechargeable battery research? [4], läst 2020-07-03.

Externa länkar