Den här artikeln behöver källhänvisningar för att kunna verifieras. (2020-03) Åtgärda genom att lägga till pålitliga källor (gärna som fotnoter). Uppgifter utan källhänvisning kan ifrågasättas och tas bort utan att det behöver diskuteras på diskussionssidan.

Konvergens är inom matematik en egenskap hos vissa följder, det vill säga sekvenser av objekt . Dessa är konvergenta om de närmar sig ett fixt objekt .

Med att en summa är konvergent menas att följden av dess partialsummor är konvergent.

Formellt är en följd i ett metriskt rum X konvergent om det finns ett element x i rummet X sådant att

För varje så finns så att om så gäller

.

I ett allmänt topologiskt rum X sägs följden konvergera mot x, om det för varje omgivning U till x gäller att endast innehåller ändligt många element från följden ovan.

Motsatsen är att följden är divergent.

I ett fullständigt metriskt rum är alla Cauchy-följder konvergenta. Stolz–Cesàros sats kan användas för att avgöra om en serie är konvergent.

Exempel

[redigera | redigera wikitext]
  1. I R är talföljden 1, 1/2, 1/4, 1/8, ... konvergent, och den konvergerar mot 0. Talföljden 1, 1+1/2, 1+1/2+1/4, ... konvergerar även den, i detta fallet mot 2.
  2. I rummet av alla reella tal större än (eller lika med) 0, konvergerar följden 1, 1/2, 1/3, 1/4, ... mot 0. Däremot är följden 1, 1+1/2, 1+1/2+1/3, ..., den harmoniska serien, divergent och växer mot oändligheten.

Funktionsföljder

[redigera | redigera wikitext]

Man kan också betrakta konvergens av en följd av funktioner definierade på något intervall, , av de reella talen eller allmänt en godtycklig mängd. Man säger att konvergerar punktvis till om för alla i .