HyperZ

ATI HyperZ je technologie pro zvýšení výkonu GPU, díky lepšímu využití propustnosti paměťového subsystému, odstranění zbytečných operací s daty a optimalizace renderovacího procesu. Tvoří ji 3 základní části: Z Compression, Fast Z Clear a Hierarchical Z-Buffer. Spolupracuje i s T&L engine – Charisma Engine.

Dovoluje zlepšení kvality obrazu bez propadu výkonu. Využití se našlo třeba při použití AA nebo AF, kde roste náročnost na přenesená data.

Vyvinula ji firma ATI pro své grafické čipy Radeon, následně ji zlepšila pod odkoupení firma AMD.

Historie

Technologie byla poprvé použita u Radeonů 7500 (jinak pojmenovány Radeon DDR, jádro R100). Díky tomu udržely výkon s GeForce. V Radeonech 8500–9250 (jádro R200) byl realizován HyperZ II. Následoval HyperZ III v Radeonech 9700 (jádro R300). Vylepšený HyperZ III+ byl použit v Radeonech 9800 (jádro R300). Následoval HyperZ HD, který byl použit na Radeonech X8xx.

Technologie

Používají se tři techniky pro zvýšení výkonu. Všechny nejsou viditelné z vrstvy programu, díky čemu nedochází k výkonnostnímu propadu.

Z Compression (Z-buffer)

Z-Buffer používá algoritmus bezeztrátového kompresního formátu k získání větší propustnosti, čímž se přenese více dat. Komprese a dekomprese se provádí v reálném čase. Využívá se třeba v Z-Buffer. Použití u Radeon 8500 zvýšilo efektivitu o 20 % oproti Radeonu 7000 (jádro R100). Poměr komprese u Radeon X1050 je až 48:1.

Kompresní schéma

Velikost vyrovnávací paměti je 8x8 pixelů. Komprese má 2 možnosti: 1) ½ původní velikosti a nazývá se špatná komprese (poorly compressed) a za 2) ¼ původní velikosti a nazývá se dobrá komprese (well compressed). Základní algoritmus je DDPCM (Diferenciálně diferenciální pulzní kódová modulace = Differential differential pulse code modulation).

Fast Z Clear

Slouží k efektivnějšímu využití Z-bufferu, díky vyčistění celých bloků paměti grafické karty po každém snímku, k použití pro další snímek. Tato technologie podle ATi dokáže zrychlit v dané operaci kartu až 64x než bez použití technologie, konvenčním zápisem nul. Nemaže barvy z bufferu. Blok v paměti může být komprimovaný, nekomprimovaný a nebo prázdný.

Čištění se provádí jako zápis a tak je proto potřeba max. přenosovou rychlost sběrnice, kvůli tomu vznikla potřeba této technologie.

Velikost Z-buferu při rozlišení 1600x1200 je zhruba 8 MB.

Hierarchical Z-Buffer

Pomocí této technologie se odstraňují pixely nebo plochy, které nebudou viditelné na obrazovce. Například HyperZ "I" uměl v taktu odstranit 8 nepotřebných pixelů, HyperZ II uměl odstranit v jednom taktu už 64 nepotřebných pixelů. V frame bufferu dochází k přepisu vzdálenějších pixelů bližšími, tento proces se jmenuje overdraw. Parametr hloubka složitosti (depth complexity) určuje množství výskytu overdraw. Nejběžnější hodnoty jsou 2 nebo 3, při velikosti 3 je 3x více renderovaných pixelů než viditelných. To logicky snižuje výkon renderovacích procesu.

Log. obvody Hierarchical Z-Buffer zkoumají scénu ještě před samotným renderováním a části scény, které nebudou viditelné, tak odstraní z renderování a díky tomu dojde k zvýšení výkonu.

Zvýšení výkonu se zajistí taky když aplikace bude optimalizovaná pro kreslení grafiky od popředů do pozadí, za použití tohoto principu by z toho těžily i grafické čipy bez Hierarchical Z-Buffer.

Z-buffer

Z-buffer se používá k ukládání barvy, geometrických údajů, údajů o poloze objektu a hloubce 3D scény, díky tomu se používá pro výpočet viditelných a neviditelných částí scény a následnému použití při Hierarchical Z-Buffer. Ukládání se nazývá Z-Buffering.

Verze

Výkon

Teoretické zvýšení propustnosti s nastavením hloubky složitosti = 3.

Rychlost a typ paměti Propustnost bez Propustnost s
160 MHz SDR 221 266
160 MHz SDR 443 531
183 MHz SDR 488 586
200 MHz SDR 533 640

ATI Radeon 64 MB DDR

Z Compression a Fast Z Clear

Hierarchical Z-Buffer

% pixelů, které neprošly Z testy / % pixelů které neprošly Z testy včetně použití Hierarchical Z-Buffer

Odkazy

Související články

Externí odkazy

Oficiální
Uživatelské