Eine Pro-Lie-Gruppe ist in der Mathematik eine topologische Gruppe, die sich in gewisser Weise als Grenzwert von Lie-Gruppen schreiben lässt.

Die Klasse aller Pro-Lie-Gruppen enthält alle Lie-Gruppen, kompakten Gruppen und zusammenhängenden lokalkompakten Gruppen, ist aber abgeschlossen unter beliebigen Produkten, was sie oft einfacher zu handhaben macht als beispielsweise die Klasse der lokalkompakten Gruppen. Lokalkompakte Pro-Lie-Gruppen sind seit der Lösung des fünften Hilbertschen Problems durch Andrew Gleason, Deane Montgomery und Leo Zippin bekannt, die Erweiterung auf nichtlokalkompakte Pro-Lie-Gruppen ist im Wesentlichen auf das Buch The Lie-Theory of Connected Pro-Lie Groups von Karl Heinrich Hofmann und Sidney Morris zurückzuführen, hat aber inzwischen auch viele Autoren angezogen.

Definition

Eine topologische Gruppe ist eine Gruppe mit Verknüpfung und neutralem Element versehen mit einer Topologie, sodass sowohl (mit der Produkttopologie auf ) als auch die Inversenbildung stetig sind. Eine Lie-Gruppe ist eine topologische Gruppe, auf der es zusätzlich eine differenzierbare Struktur gibt, sodass die Multiplikation und Inversenbildung glatt sind. Eine solche Struktur ist – falls sie existiert – immer eindeutig.

Eine topologische Gruppe ist genau dann eine Pro-Lie-Gruppe, wenn sie eine der folgenden äquivalenten Eigenschaften hat:

Man beachte, dass in diesem Artikel – sowie in der Literatur über Pro-Lie-Gruppen – eine Lie-Gruppe immer endlichdimensional und hausdorffsch ist, aber nicht zweitabzählbar sein muss. Insbesondere sind also überabzählbare diskrete Gruppen nach dieser Terminologie (nulldimensionale) Lie-Gruppen und somit insbesondere Pro-Lie-Gruppen.

Beispiele

Literatur

Einzelnachweise

  1. https://terrytao.wordpress.com/2011/10/08/254a-notes-5-the-structure-of-locally-compact-groups-and-hilberts-fifth-problem/
  2. Geir Bogfjellmo, Rafael Dahmen & Alexander Schmeding: Character groups of Hopf algebras as infinite-dimensional Lie groups. in: Annales de l’Institut Fourier 2016. Theorem 5.6