Lie groups and Lie algebras 

In mathematics, the adjoint representation (or adjoint action) of a Lie group G is a way of representing the elements of the group as linear transformations of the group's Lie algebra, considered as a vector space. For example, if G is , the Lie group of real nbyn invertible matrices, then the adjoint representation is the group homomorphism that sends an invertible nbyn matrix to an endomorphism of the vector space of all linear transformations of defined by: .
For any Lie group, this natural representation is obtained by linearizing (i.e. taking the differential of) the action of G on itself by conjugation. The adjoint representation can be defined for linear algebraic groups over arbitrary fields.
See also: Representation theory and Lie group § The Lie algebra associated with a Lie group 
Let G be a Lie group, and let
be the mapping g ↦ Ψ_{g}, with Aut(G) the automorphism group of G and Ψ_{g}: G → G given by the inner automorphism (conjugation)
This Ψ is a Lie group homomorphism.
For each g in G, define Ad_{g} to be the derivative of Ψ_{g} at the origin:
where d is the differential and is the tangent space at the origin e (e being the identity element of the group G). Since is a Lie group automorphism, Ad_{g} is a Lie algebra automorphism; i.e., an invertible linear transformation of to itself that preserves the Lie bracket. Moreover, since is a group homomorphism, too is a group homomorphism.^{[1]} Hence, the map
is a group representation called the adjoint representation of G.
If G is an immersed Lie subgroup of the general linear group (called immersely linear Lie group), then the Lie algebra consists of matrices and the exponential map is the matrix exponential for matrices X with small operator norms. We will compute the derivative of at . For g in G and small X in , the curve has derivative at t = 0, one then gets:
where on the right we have the products of matrices. If is a closed subgroup (that is, G is a matrix Lie group), then this formula is valid for all g in G and all X in .
Succinctly, an adjoint representation is an isotropy representation associated to the conjugation action of G around the identity element of G.
One may always pass from a representation of a Lie group G to a representation of its Lie algebra by taking the derivative at the identity.
Taking the derivative of the adjoint map
at the identity element gives the adjoint representation of the Lie algebra of G:
where is the Lie algebra of which may be identified with the derivation algebra of . One can show that
for all , where the right hand side is given (induced) by the Lie bracket of vector fields. Indeed,^{[2]} recall that, viewing as the Lie algebra of leftinvariant vector fields on G, the bracket on is given as:^{[3]} for leftinvariant vector fields X, Y,
where denotes the flow generated by X. As it turns out, , roughly because both sides satisfy the same ODE defining the flow. That is, where denotes the right multiplication by . On the other hand, since , by the chain rule,
as Y is leftinvariant. Hence,
which is what was needed to show.
Thus, coincides with the same one defined in § Adjoint representation of a Lie algebra below. Ad and ad are related through the exponential map: Specifically, Ad_{exp(x)} = exp(ad_{x}) for all x in the Lie algebra.^{[4]} It is a consequence of the general result relating Lie group and Lie algebra homomorphisms via the exponential map.^{[5]}
If G is an immersely linear Lie group, then the above computation simplifies: indeed, as noted early, and thus with ,
Taking the derivative of this at , we have:
The general case can also be deduced from the linear case: indeed, let be an immersely linear Lie group having the same Lie algebra as that of G. Then the derivative of Ad at the identity element for G and that for G' coincide; hence, without loss of generality, G can be assumed to be G'.
The uppercase/lowercase notation is used extensively in the literature. Thus, for example, a vector x in the algebra generates a vector field X in the group G. Similarly, the adjoint map ad_{x}y = [x,y] of vectors in is homomorphic^{[clarification needed]} to the Lie derivative L_{X}Y = [X,Y] of vector fields on the group G considered as a manifold.
Further see the derivative of the exponential map.
Let be a Lie algebra over some field. Given an element x of a Lie algebra , one defines the adjoint action of x on as the map
for all y in . It is called the adjoint endomorphism or adjoint action. ( is also often denoted as .) Since a bracket is bilinear, this determines the linear mapping
given by x ↦ ad_{x}. Within End, the bracket is, by definition, given by the commutator of the two operators:
where denotes composition of linear maps. Using the above definition of the bracket, the Jacobi identity
takes the form
where x, y, and z are arbitrary elements of .
This last identity says that ad is a Lie algebra homomorphism; i.e., a linear mapping that takes brackets to brackets. Hence, ad is a representation of a Lie algebra and is called the adjoint representation of the algebra .
If is finitedimensional and a basis for it is chosen, then is the Lie algebra of square matrices and the composition corresponds to matrix multiplication.
In a more moduletheoretic language, the construction says that is a module over itself.
The kernel of ad is the center of (that's just rephrasing the definition). On the other hand, for each element z in , the linear mapping obeys the Leibniz' law:
for all x and y in the algebra (the restatement of the Jacobi identity). That is to say, ad_{z} is a derivation and the image of under ad is a subalgebra of Der, the space of all derivations of .
When is the Lie algebra of a Lie group G, ad is the differential of Ad at the identity element of G.
There is the following formula similar to the Leibniz formula: for scalars and Lie algebra elements ,
The explicit matrix elements of the adjoint representation are given by the structure constants of the algebra. That is, let {e^{i}} be a set of basis vectors for the algebra, with
Then the matrix elements for ad_{ei} are given by
Thus, for example, the adjoint representation of su(2) is the defining representation of so(3).
The following table summarizes the properties of the various maps mentioned in the definition
Lie group homomorphism:

Lie group automorphism:

Lie group homomorphism:

Lie algebra automorphism:

Lie algebra homomorphism:

Lie algebra derivation:

The image of G under the adjoint representation is denoted by Ad(G). If G is connected, the kernel of the adjoint representation coincides with the kernel of Ψ which is just the center of G. Therefore, the adjoint representation of a connected Lie group G is faithful if and only if G is centerless. More generally, if G is not connected, then the kernel of the adjoint map is the centralizer of the identity component G_{0} of G. By the first isomorphism theorem we have
Given a finitedimensional real Lie algebra , by Lie's third theorem, there is a connected Lie group whose Lie algebra is the image of the adjoint representation of (i.e., .) It is called the adjoint group of .
Now, if is the Lie algebra of a connected Lie group G, then is the image of the adjoint representation of G: .
If G is semisimple, the nonzero weights of the adjoint representation form a root system.^{[6]} (In general, one needs to pass to the complexification of the Lie algebra before proceeding.) To see how this works, consider the case G = SL(n, R). We can take the group of diagonal matrices diag(t_{1}, ..., t_{n}) as our maximal torus T. Conjugation by an element of T sends
Thus, T acts trivially on the diagonal part of the Lie algebra of G and with eigenvectors t_{i}t_{j}^{−1} on the various offdiagonal entries. The roots of G are the weights diag(t_{1}, ..., t_{n}) → t_{i}t_{j}^{−1}. This accounts for the standard description of the root system of G = SL_{n}(R) as the set of vectors of the form e_{i}−e_{j}.
When computing the root system for one of the simplest cases of Lie Groups, the group SL(2, R) of two dimensional matrices with determinant 1 consists of the set of matrices of the form:
with a, b, c, d real and ad − bc = 1.
A maximal compact connected abelian Lie subgroup, or maximal torus T, is given by the subset of all matrices of the form
with . The Lie algebra of the maximal torus is the Cartan subalgebra consisting of the matrices
If we conjugate an element of SL(2, R) by an element of the maximal torus we obtain
The matrices
are then 'eigenvectors' of the conjugation operation with eigenvalues . The function Λ which gives is a multiplicative character, or homomorphism from the group's torus to the underlying field R. The function λ giving θ is a weight of the Lie Algebra with weight space given by the span of the matrices.
It is satisfying to show the multiplicativity of the character and the linearity of the weight. It can further be proved that the differential of Λ can be used to create a weight. It is also educational to consider the case of SL(3, R).
The adjoint representation can also be defined for algebraic groups over any field.^{[clarification needed]}
The coadjoint representation is the contragredient representation of the adjoint representation. Alexandre Kirillov observed that the orbit of any vector in a coadjoint representation is a symplectic manifold. According to the philosophy in representation theory known as the orbit method (see also the Kirillov character formula), the irreducible representations of a Lie group G should be indexed in some way by its coadjoint orbits. This relationship is closest in the case of nilpotent Lie groups.