Axial piston pump

An axial piston pump is a positive displacement pump that has a number of pistons in a circular array within a cylinder block.

It can be used as a stand-alone pump, a hydraulic motor or an automotive air conditioning compressor.


Cutaway side-view diagram of an axial piston pump
3-D rendering of an axial piston pump with the parts labeled
Animation of an axial piston pump in operation

An axial piston pump has a number of pistons (usually an odd number) arranged in a circular array within a housing which is commonly referred to as a cylinder block, rotor or barrel. This cylinder block is driven to rotate about its axis of symmetry by an integral shaft that is, more or less, aligned with the pumping pistons (usually parallel but not necessarily).

Design difficulties

Designers have a number of problems to overcome in designing axial piston pumps. One is managing to be able to manufacture a pump with the fine tolerances necessary for efficient operation. The mating faces between the rotary piston-cylinder assembly and the stationary pump body have to be almost a perfect seal while the rotary part turns at perhaps 3000 rpm. The pistons are usually less than half an inch (13 mm) in diameter with similar stroke lengths. Keeping the wall to piston seal tight means that very small clearances are involved and that materials have to be closely matched for similar coefficient of expansion.

The pistons have to be drawn outwards in their cylinder by some means. On small pumps this can be done by means of a spring inside the cylinder that forces the piston up the cylinder. Inlet fluid pressure can also be arranged so that the fluid pushes the pistons up the cylinder. Often a vane pump is located on the same drive shaft to provide this pressure and it also allows the pump assembly to draw fluid against some suction head from the reservoir, which is not an attribute of the unaided axial piston pump.

Another method of drawing pistons up the cylinder is to attach the cylinder heads to the surface of the swash plate. In that way the piston stroke is totally mechanical. However, the designer's problem of lubricating the swash plate face (a sliding contact) is made even more difficult.

Internal lubrication of the pump is achieved by use of the operating fluid—normally called hydraulic fluid. Most hydraulic systems have a maximum operating temperature, limited by the fluid, of about 120 °C (250 °F) so that using that fluid as a lubricant brings its own problems. In this type of pump the leakage from the face between the cylinder housing and the body block is used to cool and lubricate the exterior of the rotating parts. The leakage is then carried off to the reservoir or to the inlet side of the pump again. Hydraulic fluid that has been used is always cooled and passed through micrometre-sized filters before recirculating through the pump.


Despite the problems indicated above this type of pump can contain most of the necessary circuit controls integrally (the swash-plate angle control) to regulate flow and pressure, be very reliable and allow the rest of the hydraulic system to be very simple and inexpensive.

Axial piston pumps are used to power the hydraulic systems of jet aircraft, being gear-driven off of the turbine engine's main shaft, The system used on the F-14 used a 9-piston pump that produced a standard system operating pressure of 3000 psi and a maximum flow of 84 gallons per minute.

Automotive air conditioning compressors for cabin cooling are nowadays mostly based around the axial piston pump design (others are based on the scroll compressor or rotary vane pump ones instead) in order to contain their weight and space requirement in the vehicle's engine bay and reduce vibrations. They're available in fixed displacement and dynamically adjusted variable displacement variants, and, depending upon the compressor's design, the actual rotating swashplate either directly drives a set of pistons mated to its edges through a set of hemispherical metal shoes, or a nutating plate on which a set of pistons are mounted by means of rods.

They are also used in some pressure washers. For example Kärcher has several models powered by axial piston pumps with three pistons.[3]

Axial reciprocating motors are also used to power many machines. They operate on the same principle as described above, except that the circulating fluid is provided under considerable pressure and the piston housing is made to rotate and provide shaft power to another machine. A common use of an axial reciprocating motor is to power small earthmoving plant such as skid loader machines. Another use is to drive the screws of torpedoes.



  1. ^ Danfoss. "Applications Manual: Transmission Circuit Recommendations". p. 6
  2. ^ "A Range at Rotary Power - Hydraulic Motors and Pumps". Archived from the original on 2010-07-04.
  3. ^ "Definitive Guide to Pressure Washer Pumps". PressureWashr. 13 August 2015. Retrieved 13 August 2015.