The Beal conjecture is the following conjecture in number theory:

Unsolved problem in mathematics:

If where A, B, C, x, y, z are positive integers and x, y, z are ≥ 3, do A, B, and C have a common prime factor?

If
where A, B, C, x, y, and z are positive integers with x, y, z ≥ 3, then A, B, and C have a common prime factor.

Equivalently,

The equation has no solutions in positive integers and pairwise coprime integers A, B, C if x, y, z ≥ 3.

The conjecture was formulated in 1993 by Andrew Beal, a banker and amateur mathematician, while investigating generalizations of Fermat's Last Theorem.[1][2] Since 1997, Beal has offered a monetary prize for a peer-reviewed proof of this conjecture or a counterexample.[3] The value of the prize has increased several times and is currently $1 million.[4]

In some publications, this conjecture has occasionally been referred to as a generalized Fermat equation,[5] the Mauldin conjecture,[6] and the Tijdeman-Zagier conjecture.[7][8][9]

Related examples

To illustrate, the solution has bases with a common factor of 3, the solution has bases with a common factor of 7, and has bases with a common factor of 2. Indeed the equation has infinitely many solutions where the bases share a common factor, including generalizations of the above three examples, respectively

and

Furthermore, for each solution (with or without coprime bases), there are infinitely many solutions with the same set of exponents and an increasing set of non-coprime bases. That is, for solution

we additionally have

where

Any solutions to the Beal conjecture will necessarily involve three terms all of which are 3-powerful numbers, i.e. numbers where the exponent of every prime factor is at least three. It is known that there are an infinite number of such sums involving coprime 3-powerful numbers;[10] however, such sums are rare. The smallest two examples are:

What distinguishes Beal's conjecture is that it requires each of the three terms to be expressible as a single power.

Relation to other conjectures

Fermat's Last Theorem established that has no solutions for n > 2 for positive integers A, B, and C. If any solutions had existed to Fermat's Last Theorem, then by dividing out every common factor, there would also exist solutions with A, B, and C coprime. Hence, Fermat's Last Theorem can be seen as a special case of the Beal conjecture restricted to x = y = z.

The Fermat–Catalan conjecture is that has only finitely many solutions with A, B, and C being positive integers with no common prime factor and x, y, and z being positive integers satisfying Beal's conjecture can be restated as "All Fermat–Catalan conjecture solutions will use 2 as an exponent".

The abc conjecture would imply that there are at most finitely many counterexamples to Beal's conjecture.

Partial results

In the cases below where n is an exponent, multiples of n are also proven, since a kn-th power is also an n-th power. Where solutions involving a second power are alluded to below, they can be found specifically at Fermat–Catalan conjecture#Known solutions. All cases of the form (2, 3, n) or (2, n, 3) have the solution 23 + 1n = 32 which is referred below as the Catalan solution.

Prize

For a published proof or counterexample, banker Andrew Beal initially offered a prize of US $5,000 in 1997, raising it to $50,000 over ten years,[3] but has since raised it to US $1,000,000.[4]

The American Mathematical Society (AMS) holds the $1 million prize in a trust until the Beal conjecture is solved.[35] It is supervised by the Beal Prize Committee (BPC), which is appointed by the AMS president.[36]

Variants

The counterexamples and show that the conjecture would be false if one of the exponents were allowed to be 2. The Fermat–Catalan conjecture is an open conjecture dealing with such cases (the condition of this conjecture is that the sum of the reciprocals is less than 1). If we allow at most one of the exponents to be 2, then there may be only finitely many solutions (except the case ).

If A, B, C can have a common prime factor then the conjecture is not true; a classic counterexample is .

A variation of the conjecture asserting that x, y, z (instead of A, B, C) must have a common prime factor is not true. A counterexample is in which 4, 3, and 7 have no common prime factor. (In fact, the maximum common prime factor of the exponents that is valid is 2; a common factor greater than 2 would be a counterexample to Fermat's Last Theorem.)

The conjecture is not valid over the larger domain of Gaussian integers. After a prize of $50 was offered for a counterexample, Fred W. Helenius provided .[37]

See also

References

  1. ^ "Beal Conjecture". American Mathematical Society. Retrieved 21 August 2016.
  2. ^ "Beal Conjecture". Bealconjecture.com. Retrieved 2014-03-06.
  3. ^ a b R. Daniel Mauldin (1997). "A Generalization of Fermat's Last Theorem: The Beal Conjecture and Prize Problem" (PDF). Notices of the AMS. 44 (11): 1436–1439.
  4. ^ a b "Beal Prize". Ams.org. Retrieved 2014-03-06.
  5. ^ a b c d e f Bennett, Michael A.; Chen, Imin; Dahmen, Sander R.; Yazdani, Soroosh (June 2014). "Generalized Fermat Equations: A Miscellany" (PDF). Simon Fraser University. Retrieved 1 October 2016.
  6. ^ "Mauldin / Tijdeman-Zagier Conjecture". Prime Puzzles. Retrieved 1 October 2016.
  7. ^ a b Elkies, Noam D. (2007). "The ABC's of Number Theory" (PDF). The Harvard College Mathematics Review. 1 (1).
  8. ^ Michel Waldschmidt (2004). "Open Diophantine Problems". Moscow Mathematical Journal. 4: 245–305. arXiv:math/0312440. doi:10.17323/1609-4514-2004-4-1-245-305. S2CID 11845578.
  9. ^ a b Crandall, Richard; Pomerance, Carl (2000). Prime Numbers: A Computational Perspective. Springer. p. 417. ISBN 978-0387-25282-7.
  10. ^ Nitaj, Abderrahmane (1995). "On A Conjecture of Erdos on 3-Powerful Numbers". Bulletin of the London Mathematical Society. 27 (4): 317–318. CiteSeerX 10.1.1.24.563. doi:10.1112/blms/27.4.317.
  11. ^ "Billionaire Offers $1 Million to Solve Math Problem | ABC News Blogs – Yahoo". Gma.yahoo.com. 2013-06-06. Archived from the original on 2013-06-13. Retrieved 2014-03-06.
  12. ^ Poonen, Bjorn; Schaefer, Edward F.; Stoll, Michael (2005). "Twists of X(7) and primitive solutions to x2 + y3 = z7". Duke Mathematical Journal. 137: 103–158. arXiv:math/0508174. Bibcode:2005math......8174P. doi:10.1215/S0012-7094-07-13714-1. S2CID 2326034.
  13. ^ Bruin, Nils (2003-01-09). "Chabauty methods using elliptic curves". Journal für die reine und angewandte Mathematik. 2003 (562). doi:10.1515/crll.2003.076. ISSN 0075-4102.
  14. ^ a b Bruin, Nils (2005-03-01). "The primitive solutions to x^3 + y^9 = z^2". Journal of Number Theory. 111 (1): 179–189. arXiv:math/0311002. doi:10.1016/j.jnt.2004.11.008. ISSN 0022-314X. S2CID 9704470.
  15. ^ a b Frits Beukers (January 20, 2006). "The generalized Fermat equation" (PDF). Staff.science.uu.nl. Retrieved 2014-03-06.
  16. ^ Brown, David (2009). "Primitive Integral Solutions to x2 + y3 = z10". arXiv:0911.2932 [math.NT].
  17. ^ Freitas, Nuno; Naskręcki, Bartosz; Stoll, Michael (January 2020). "The generalized Fermat equation with exponents 2, 3, n". Compositio Mathematica. 156 (1): 77–113. doi:10.1112/S0010437X19007693. ISSN 0010-437X. S2CID 15030869.
  18. ^ Siksek, Samir; Stoll, Michael (2013). "The Generalised Fermat Equation x2 + y3 = z15". Archiv der Mathematik. 102 (5): 411–421. arXiv:1309.4421. doi:10.1007/s00013-014-0639-z. S2CID 14582110.
  19. ^ "The Diophantine Equation" (PDF). Math.wisc.edu. Retrieved 2014-03-06.
  20. ^ Bennett, Michael A.; Chen, Imin (2012-07-25). "Multi-Frey -curves and the Diophantine equation a^2 + b^6 = c^n". Algebra & Number Theory. 6 (4): 707–730. doi:10.2140/ant.2012.6.707. ISSN 1944-7833.
  21. ^ Chen, Imin (2007-10-23). "On the equation $s^2+y^{2p} = \alpha^3$". Mathematics of Computation. 77 (262): 1223–1228. doi:10.1090/S0025-5718-07-02083-2. ISSN 0025-5718.
  22. ^ Siksek, Samir; Stoll, Michael (2012). "Partial descent on hyperelliptic curves and the generalized Fermat equation x^3 + y^4 + z^5 = 0". Bulletin of the London Mathematical Society. 44 (1): 151–166. arXiv:1103.1979. doi:10.1112/blms/bdr086. ISSN 1469-2120. S2CID 12565749.
  23. ^ a b Poonen, Bjorn (1998). "Some diophantine equations of the form x^n + y^n = z^m". Acta Arithmetica (in Polish). 86 (3): 193–205. doi:10.4064/aa-86-3-193-205. ISSN 0065-1036.
  24. ^ Dahmen, Sander R.; Siksek, Samir (2013). "Perfect powers expressible as sums of two fifth or seventh powers". arXiv:1309.4030 [math.NT].
  25. ^ a b H. Darmon and L. Merel. Winding quotients and some variants of Fermat's Last Theorem, J. Reine Angew. Math. 490 (1997), 81–100.
  26. ^ Bennett, Michael A. (2006). "The equation x^{2n} + y^{2n} = z^5" (PDF). Journal de Théorie des Nombres de Bordeaux. 18 (2): 315–321. doi:10.5802/jtnb.546. ISSN 1246-7405.
  27. ^ Anni, Samuele; Siksek, Samir (2016-08-30). "Modular elliptic curves over real abelian fields and the generalized Fermat equation x^{2ℓ} + y^{2m} = z^p". Algebra & Number Theory. 10 (6): 1147–1172. arXiv:1506.02860. doi:10.2140/ant.2016.10.1147. ISSN 1944-7833. S2CID 118935511.
  28. ^ Billerey, Nicolas; Chen, Imin; Dembélé, Lassina; Dieulefait, Luis; Freitas, Nuno (2019-03-05). "Some extensions of the modular method and Fermat equations of signature (13, 13, n)". arXiv:1802.04330 [math.NT].
  29. ^ Kraus, Alain (1998-01-01). "Sur l'équation a^3 + b^3 = c^p". Experimental Mathematics. 7 (1): 1–13. doi:10.1080/10586458.1998.10504355. ISSN 1058-6458.
  30. ^ Darmon, H.; Granville, A. (1995). "On the equations zm = F(x, y) and Axp + Byq = Czr". Bulletin of the London Mathematical Society. 27 (6): 513–43. doi:10.1112/blms/27.6.513.
  31. ^ Wacław Sierpiński, Pythagorean Triangles, Dover, 2003, p. 55 (orig. Graduate School of Science, Yeshiva University, 1962).
  32. ^ Norvig, Peter. "Beal's Conjecture: A Search for Counterexamples". Norvig.com. Retrieved 2014-03-06.
  33. ^ "Sloane's A261782 (see the Theorem and its proof in the comment from May 08 2021)". The On-Line Encyclopedia of Integer Sequences. OEIS Foundation. Retrieved 2021-06-19.
  34. ^ Rahimi, Amir M. (2017). "An Elementary Approach to the Diophantine Equation Using Center of Mass". Missouri J. Math. Sci. 29 (2): 115–124. doi:10.35834/mjms/1513306825.
  35. ^ Walter Hickey (5 June 2013). "If You Can Solve This Math Problem, Then A Texas Banker Will Give You $1 Million". Business Insider. Retrieved 8 July 2016.
  36. ^ "$1 Million Math Problem: Banker D. Andrew Beal Offers Award To Crack Conjecture Unsolved For 30 Years". International Science Times. 5 June 2013. Archived from the original on 29 September 2017.
  37. ^ "Neglected Gaussians". Mathpuzzle.com. Retrieved 2014-03-06.