This article contains expanded biographical information about Nikola Tesla.


Nikola Tesla was of unusual intellectual brilliance. His patents and theoretical work still form the basis for modern alternating current electric power (AC) systems including the polyphase power distribution system. Tesla helped usher in the Second Industrial Revolution. His legacy can been seen across modern civilization.

Additional biographical information

Early years

File:Serbia100Dinara.jpg
Tesla on 100 Serbian Dinars in 2004. Photo courtesy of National bank of Serbia (www.nbs.org.yu)

Tesla was born "at the stroke of midnight" with lightning striking during a summer storm. He was born in Smiljan near Gospić, Lika, (the Military Frontier of the Austria-Hungary, now in Croatia). The midwife commented, "He'll be a child of the storm," to which his mother replied, "No, of light." Tesla was baptised in the Old Slavonic Church rite. His Baptism Certificate reports that he was born on June 28 (Julian calendar; July 10 in the Gregorian calendar) 1856, and christened by the Serbian orthodox priest, Toma Oklobdžija.

His father was Rev. Milutin Tesla, a Serbian priest in the Orthodox Metropolitanate of Karlovci which gathered the Serbs of the "Greek-rite" as they were legally referred to in Habsburg Monarchy at the time. His father's church in Gospić was destroyed in the 1990s[1]. His mother was Đuka Mandić, a housewife talented in making home craft tools. Nikola was one of five children, having one brother and three sisters. His godfather, Jovan Drenovac, was a Captain in the Krajina army. His family moved to Gospić in 1862. Tesla went to school in Karlovac (then Austria-Hungary), then studied electrical engineering at the Austria Politechnic in Graz, Austria (1875). While there, he studied the uses of alternating current. He also developed a telephone repeater (or amplifier) and studied the uses of alternating current. . Tesla was fascinated by the Crookes radiometer, believeing that it was a most wonderful invention.

In 1881 he moved to Budapest to work for the telegraph company, American Telephone Company. On the opening of the telephone exchange in Budapest, 1881, Tesla became the chief electrician to the company, later engineer to the Yugoslav government and the country's first telephone system. He also developed a telephone repeater (or amplifier). Tesla invented a precursor to modern wireless telephone, known as a telephone repeater (or sometimes an amplifier). The device could act as an audio speaker (not an audio transducer).

The device had its resonance tuned to a particular frequency of other repeaters to communicate between each. In 1916, Tesla described the prior developed audio transducers. According to Tesla, it was the "... [S]implest ways [to detect the radiant energy ...] the low frequency gave audible notes. [... in a field, there was] placed a conductor, a wire or a coil, and then Tesla would get a note [...] characteristics of the audible note". The audible sounds were of the quality of the telephones diaphragms of that period of time. The invention was never patented nor released publicly (till years later by Tesla himself). The device also contained the characteristics of modern wireless telephones.

For a while he stayed in Maribor. He was employed at his first job as an assistant engineer. Tesla suffered a nervous breakdown during this time. In 1882 he moved to Paris to work as an engineer for the Continental Edison Company. He worked designing improvements to electric equipment. In the same year, Tesla conceived of the induction motor and began developing various devices that use rotating magnetic fields (for which he received patents in 1888). Tesla visualized the rotating fields and thereby designed the induction motor. Tesla hastened from Paris to his mother's side as she lay dying, arriving hours before her death in 1882. Her last words to him were, "You've arrived, Nidzo, my pride." After her death, Tesla fell ill. He spent two to three weeks recuperating in Gospić and the village of Tomingaj near Gračac, the birthplace of his mother. All his life, Tesla kept a home-spun embroidered travel bag from his mother.

In 1886, Tesla formed his own company, Tesla Electric Light & Manufacturing. The initial financial investors disagreed with Tesla on his plan for an alternating current motor and eventually relieved him of his duties at the company.

Early employment

When Tesla first arrived in the United States, he had a letter of recommendation from Charles Batchelor to Thomas Edison which read simply "I know two great men, and you are one of them. This young man is the other". Tesla's work for Edison began with simple electrical engineering. Eventually Tesla earned the respect of Edison and offered to undertake a complete re-design of the Edison company's DC dynamos. After Tesla described the nature of the benefits from his proposed modifications, Edison offered him US$50,000 if they were successfully completed.

Tesla worked nearly a year to redesign them and gave the Edison company several enormously profitable new patents in the process. When Tesla inquired about the $50,000, Edison replied to him, "Tesla, you don't understand our American humor", and reneged on his agreement, offering a raise in Tesla's salary of $10 per week as a compromise - at which rate it would have taken almost 100 years to earn the money Edison had originally promised. Tesla resigned on the spot. In some accounts of the final confrontation, Tesla did not say a single word to Edison but simply turned his back on the inventor and walked off the premises. Edison would receive U.S. patent 328,572 for an improved commutator and, later, would gain U.S. patent 373,584 for a dynamo-electric machine (which includes an extra coil and utilizes a field of force) among other patents which Tesla may be responsible for.

Tesla worked in New York as a common laborer from 1886 to 1887 to feed himself and raise capital for his next project. In 1887, he constructed the initial brushless alternate-current induction motor, which he demonstrated to the American Institute of Electrical Engineers (now IEEE) in 1888. In the same year, he developed the principles of his Tesla coil and began working with George Westinghouse at Westinghouse's Pittsburgh labs. Westinghouse listened to his ideas for polyphase systems which would allow transmission of AC electricity over large distances.

Colorado Springs

In 1899, Tesla decided to move and began research in Colorado Springs, Colorado, where he could have room for his high-voltage high-frequency experiments. He chose this location primarily because of the frequent thunderstorms, the high altitude (where the air, being at a lower pressure, had a lower dielectric breakdown strength, making it easier to ionize), and the dryness of the air (minimizing leakage of electric charge through insulators). Also, the property was free and electric power available from the El Paso Power Company. Today, magnetic intensity charts also show that the ground around his lab possesses a denser magnetic field than the surrounding area. Tesla reached Colorado Springs on May 17, 1899. Upon his arrival he told reporters that he was conducting experiments transmitting signals from Pikes Peak to Paris.

Tesla kept a diary of his experiments in the Colorado Springs lab where he spent nearly nine months. It consists of 500 pages of handwritten notes and nearly 200 drawings, recorded chronologically between June 1, 1899 and January 7, 1900, as the work occurred, containing explanations of his experiments. He was developing a system for wireless telegraphy, telephony and the transmission of power, experimented with high-voltage electricity and the possibility of wireless transmitting and distributing large amounts of electrical energy over long distances. He also conceived a system for geophysical exploration--seismology--which he called telegeodynamics, based on his reciprocating mechanical oscillator patented in 1894, and explained that a long sequence of small explosions could be used to find ore and create earthquakes large enough to destroy the Earth. He did not experiment with this as he felt there would not be "a desirable outcome".

Laboratory construction

Tesla, a local contractor, and several assistants commenced the construction of the laboratory shortly after arriving in Colorado Springs. The lab was established on Knob Hill, east of the Colorado School for the Deaf and Blind and one mile (1.6 km) east of downtown. Its primary purposes were experiments with high frequency electricity and other phenomena, and secondary--research into wireless transmission of electrical power. Tesla's design of the lab was a building fifty feet by sixty feet (15 by 18 m) with eighty-foot (24 m) ceilings. A one-hundred-forty-two foot (43 m) conducting aerial with a thirty-inch (76 cm) copper-foil covered wooden ball was erected on the roof. The roof was rolled back to prevent fire from sparks and other dangerous effects of the experiments. The laboratory had sensitive instruments and equipment.

Magnifying transmitter

Main article: Magnifying Transmitter

File:Tesla colorado 444px.jpg
Publicity photo of Tesla sitting in his laboratory in Colorado Springs with his "magnifying transmitter" generating millions of volts of electricity. The arcs are about 22 feet (7 m) long. (Tesla's notes identify this as a Double exposure.)

Tuned circuits

Tesla also constructed many smaller resonance transformers and discovered the concept of tuned electrical circuits. He also developed a number of coherers for separating and perceiving electromagnetic waves and designed rotating coherers which he used to detect the unique types of electromagnetic phenomenon he observed. They had a mechanism of geared wheels driven by a coiled spring-drive mechanism which rotated small glass cylinders. These experiments were the final stage of years of work on synchronized tuned electrical circuits.

These transceivers were constructed to demonstrate how signals could be "tuned in". Tesla logged in his diary on July 3, 1899 that a separate resonance transformer tuned to the same high frequency as a larger high-voltage resonance transformer would transceive energy from the larger coil, acting as a transmitter of wireless energy, which was used to confirm Tesla's patent for radio during later disputes in the courts. These air core high-frequency resonate coils were the predecessors of systems from radio to radar and medical magnetic resonance imaging devices.

Propagation and resonance

On July 3, 1899, Tesla discovered terrestrial stationary waves within the earth. He demonstrated that the Earth behaves as a smooth polished conductor and possesses electrical vibrations. He experimented with waves characterized by a lack of vibration at points, between which areas of maximum vibration occur periodically. These standing waves were produced by confining waves within constructed conductive boundaries. Tesla demonstrated that the Earth could respond at predescribed frequencies of electrical vibrations. At this time, Tesla realized that it was possible to transceive power around the globe. A few years later, George Westinghouse stopped funding Tesla's research when Tesla showed him that he could offer free electricity to the whole world by simply "ramming a stick in the earth in your backyard". Westinghouse said he would go bankrupt if that happened.

Tesla conducted experiments contributing to the understanding of electromagnetic propagation and the Earth's resonance. It is well documented (from various photos from the time) that he lit hundreds of lamps wirelessly at a distance of up to twenty-five miles (40 km). He transmitted signals several kilometres and lit neon tubes conducting through the ground. He researched ways to transmit energy wirelessly over long distances (utilizing the ionosphere and the ground's telluric currents via transverse waves, to a lesser extent, and, more readily, longitudinal waves). He transmitted extremely low frequencies through the ground as well as between the earth's surface and the Kennelly-Heaviside layer. He recieved patents on wireless that developed standing waves by this method. In his experiments, he made mathematical calculations and computations based on his experiments and discovered that the resonant frequency of the Earth was approximately 8 Hz (Hertz). In the 1950s, researchers confirmed resonant frequency was in this range (interesting to note, Theta brain waves also cycle in this range).

Cosmic waves

In the Colorado Springs lab, Tesla recorded what he concluded were extraterrestrial radio signals and announced his findings in some of the scientific journals of the time. [2] His announcements and data were rejected by the scientific community who did not believe him. He notes measurements of repetitive signals from his receiver which are substantially different from the signals he had noted from storms and earth noise. Specifically, he later recalled that the signals appeared in groups of clicks 1, 2, 3, and 4 clicks together. He stated in the article "A Giant Eye to See Round the World", of 25 February 1923, that:

"Twenty-two years ago, while experimenting in Colorado with a wireless power plant, I obtained extraordinary experimental evidence of the existence of life on Mars. I had perfected a wireless receiver of extraordinary sensitiveness, far beyond anything known, and I caught signals which I interpreted as meaning 1--2--3--4. I believe the Martians used numbers for communication because numbers are universal." Albany Telegram — 25 February 1923 [3]

Clearly, Tesla felt the signal groups originated on the planet Mars. In 1996 Corum and Corum published an analysis of Jovian plasma torus signals which indicate that there was a correspondence between the setting of Mars at Colorado Springs, and the cessation of signals from Jupiter in the summer of 1899 when Tesla was there. [4] Further, analysis by the Corums indicate that Tesla's transceiver was sensitive in the 18 kHz gap in the Kennelly-Heaviside layer which would have allowed that reception from Jupiter. Therefore, there is evidence the signals Tesla noticed came from Jupiter, among other possible sources. Tesla spent the latter part of his life trying to signal Mars.

It is important to recognize that when he says he "recorded" these signals, it is meant that he wrote down the data and his impressions of what he had heard. He did release reports at the time. Tesla’s initial announcement of the existence of extraterrestrial radio signals was in 1899. [5] In March of 1907, Tesla wrote about signaling to Mars in Harvard Magazine and how it was a problem of electrical engineering. [6] Additional descriptions come from remembrances twenty years later. All this was met with resistance and disbelief by his contemporaries.

Colorado departure

Tesla left Colorado Springs on January 7, 1900. The lab was torn down, broken up, and its contents sold to pay debts. The Colorado experiments prepared Tesla for his next project, the establishment of a wireless power transmission facility that would be known as Wardenclyffe. On March 21, 1900, Tesla was granted US685012 patent for the means for increasing the intensity of electrical oscillations. The United States Patent Office classification system currently denotes that this patent pretains to superconductivity technology (Class 505/825).

Fight for radio patent

Main article : History of radio

In 1904, the US Patent Office reversed its decision and awarded Guglielmo Marconi the patent for radio. Tesla began his fight to re-acquire his radio patent. Later in 1907, Marconi was awarded the Nobel Prize for radio. Tesla was deeply resentful. So in 1915, Tesla filed a lawsuit against Marconi.

Tesla always disputed the claim that Marconi invented radio and he gave a simple reason for this position. It was that radio is not an invention: "It was evident to me in 1888 that wireless transmission of energy, if it could ever be accomplished, is not an invention; it is an art. Bell's telephone, Edison's phonograph, or my induction motor were inventions, but the wireless transmission of energy is an art that requires a great many inventions in combination.", (Nikola Tesla, 1916, in Ed. Anderson, Leland, 'Nikola Tesla On His Work With Alternating Currents And Their Application to Wireless Telegraphy, Telephony, and Transmission of Energy, Published 1992). Seen in this context, some believe that it is Tesla's lecture and patent record from 1888 onwards that contains the fundamental information on the '....great many inventions...' that form the basis for modern radio and wireless technology.

An ongoing lawsuit regarding the patent battle was finally resolved in Tesla's favor in 1944, one year after his death. This decision was based on the facts of the prior work existing before the establishment of Marconi's patent. At the time, the United States Army was involved in a patent infringement lawsuit with Marconi regarding radio, leading some to posit that the government granted Tesla and others the formal recognition in order to nullify any claims Marconi would have to compensation (as the earlier award to Marconi nullified any claims Tesla would have for compensation).

Nobel rumors

Due to the fact that the Nobel Prize was awarded to Marconi for radio in 1909, it was believed that Tesla and Edison were to share the Nobel Prize of 1912 (or 1915; some accounts differ). Tesla's rumored nomination for the Nobel Prize in Physics was primarily for his experiments with tuned circuits using high-voltage high-frequency resonant transformers. It was possible that Tesla was told of the plans of the physics award committee and let it be known that he would not share the award with Edison.

Later years

Prior to the First World War, Tesla looked overseas for investors to fund his research. When the war started, Tesla lost funding he was receiving from his European patents. Wardenclyffe Tower was also demolished towards the end of WWI. Tesla had predicted the relevant issues of the post-World War I environment (a war which theoretically ended) in a printed article (December 20, 1914). Tesla believed that the League of Nations was not a remedy for the times and issues. In 1915, Tesla filed a lawsuit against Marconi attempting, unsuccessfully, to obtain a court injunction against the claims of Marconi. Around 1916, Tesla filed for bankruptcy because he owed so much in back taxes. He was living in poverty.

Tesla started to exhibit pronounced symptoms of obsessive-compulsive disorder in the years following. He became obsessed with the number three. He often felt compelled to walk around a block three times before entering a building, demanded a stack of three folded cloth napkins beside his plate at every meal, etc. The nature of OCD was little understood at the time and no treatments were available, so his symptoms were considered by some to be evidence of partial insanity and this probably hurt what was left of his reputation. This obsessive-compulsive behavior may have originated from the observations over repeated polyphase systems in nature that Tesla researched.

At this time, he was staying at the Waldorf-Astoria Hotel, renting in an arrangement for deferred payments. Eventually, the Wardenclyffe deed was turned over to George Boldt, proprietor of the Waldorf-Astoria to pay a $20,000 debt. In 1917, around the time that the Wardenclyffe Tower was demolished by Boldt to make the land a more viable real estate asset, Tesla received AIEE's highest honor, the Edison Medal. The irony of this honor was probably not lost on Tesla.

Radar development

Main article: History of radar

Tesla, in August 1917, first established principles regarding frequency and power level for the first primitive radar units in 1934. Emile Girardeau, working with the first French radar systems, stated he was building radar systems "conceived according to the principles stated by Tesla". By the twenties, Tesla was reportedly negotiating with the United Kingdom government under Prime Minister Chamberlain about a ray system. Tesla had also stated that efforts had been made to steal the "death ray" (though they had failed). The Chamberlain government was removed, though, before any final negotiations occurred. The incoming Baldwin government found no use for Tesla's suggestions and ended negotiations.

1930s

On Tesla's seventy-fifth birthday in 1931, Time magazine put him on its cover. [7] The cover caption noted his contribution to electrical power generation. In 1935, many of Marconi's patents relating to the radio were declared invalid by the United States Court of Claims. The Court of Claims decided that the prior work of Tesla (specifically US645576 and US649621) had anticipated Marconi's later works. Tesla got his last patent in 1928 on January 3, an apparatus for aerial transportation which was the first instance of VTOL aircraft. In 1934, Tesla wrote to consul Janković of his homeland. The letter contained the message of gratitude to Mihajlo Pupin who initiated a donation scheme by which American companies could support Tesla. Tesla refused the assistance, and chose to live by a modest pension received from Yugoslavia and to continue researching.

Field theories

When he was eighty-one, Tesla stated he had completed a Dynamic Theory of Gravity. He stated that it was "worked out in all details" and hoped to give to the world the theory soon. [8] The theory was never published. At the time of his announcement, it was considered by the scientific establishment to exceed the bounds of reason. Some believe that Tesla never fully developed the Unified Field Theory, nor that any physicist in the years since it was first postulated.

While Tesla had "worked out a dynamic theory of gravity" that he soon hoped to give to the world, he died before he publicized any details. Few details were revealed by Tesla about his theory in the announcement. Tesla's critique in the announcement was the opening clash between him and modern experimental physics. Tesla may have viewed his principles in such a manner as to not be in conflict with other modern theories (besides Einstein's).Tesla's theory is ignored by some researchers (and mainly disregaurded by physicists).

The bulk of the theory was developed between 1892 and 1894, during the period that he was conducting experiments for with high frequency and high potential electromagnetism and patenting devices for thier ultilization. It was completed, according to Tesla, by the end of the 1930s. Tesla's theory explained gravity using electrodynamics consisting of transverse waves (to a lesser extent) and longitudinal waves (for the majority). Reminiscent of Mach's principle, Tesla stated in 1925 that,

There is no thing endowed with life - from man, who is enslaving the elements, to the nimblest creature - in all this world that does not sway in it's turn. Whenever action is born from force, though it be infinitesimal, the cosmic balance is upset and the universal motion results.

Tesla, concerning Albert Einstein's relativity theory, stated that '...the relativity theory, by the way, is much older than its present proponents. It was advanced over 200 years ago by my illustrious countryman Boskovic, the great philospher, who, not withstanding other and multifold obligations, wrote a thousand volumes of excellent literature on a vast variety of subjects. Boskovic dealt with relativity, including the so-called time-space continuum...', (1936 unpublished interview, quoted in Anderson, L, ed. Nikola Tesla: Lecture Before the New York Academy of Sciences: The Streams of Lenard and Roentgen and Novel Apparatus for Their Production, 6 April 1897, reconstructed 1994).

Tesla was critical of Einstein's relativity work, '...[a] magnificent mathematical garb which fascinates, dazzles and makes people blind to the underlying errors. The theory is like a beggar clothed in purple whom ignorant people take for a king...., its exponents are brilliant men but they are metaphysicists rather than scientists...', (New York Times, 11 July 1935, p23, c.8).

Tesla also stated that 'I hold that space cannot be curved, for the simple reason that it can have no properties. It might as well be said that God has properties. He has not, but only attributes and these are of our own making. Of properties we can only speak when dealing with matter filling the space. To say that in the presence of large bodies space becomes curved is equivalent to stating that something can act upon nothing. I, for one, refuse to subscribe to such a view.', (New York Hearald Tribune, 11 September 1932)

Death and afterwards

Tesla died alone in the hotel New Yorker of heart failure, some time between the evening of January 5 and the morning of January 8, 1943. Despite selling his AC electricity patents, he was essentially destitute and died with significant debts.

At the time of his death, Tesla had been working on some form of teleforce weapon, or death ray, the secrets of which he had offered to the United States War Department on the morning of 5 January. It appears that his proposed death ray was related to his research into ball lightning and plasma. He was found dead three days later and, after the FBI was contacted by the War Department, his papers were declared to be top secret.

Immediately after Tesla's death became known, the Federal Bureau of Investigation instructed the Office of Alien Property to take possession of his papers and property, despite his US citizenship. All of his personal effects were seized on the advice of presidential advisors. J. Edgar Hoover declared the case "most secret", because of the nature of Tesla's inventions and patents. Tesla's Serbian-Orthodox family and the Yugoslav embassy struggled with American authorities to gain these items after his death due to the potential significance of some of his research. Eventually, his nephew, Sava Kosanovich, got possession of some of his personal effects (which are now housed in the Nikola Tesla Museum in Belgrade, Yugoslavia). Tesla's funeral took place on January 12, 1943 at the Cathedral of Saint John the Divine in Manhattan, New York City.

In 1976, a bronze statue of Tesla was placed at Niagara Falls. A similar statue was also erected in the Tesla's hometown of Gospic in the 1981. The statue in Gospic was dynamited by the Croatian forces in 1991.

Perhaps because of Tesla's personal eccentricity and the dramatic nature of his demonstrations, conspiracy theories about applications of his work persist. The common Hollywood stereotype of the "mad scientist" mirrors Tesla's real-life persona, or at least a caricature of it—which may be no accident considering that many of the earliest such movies (including the first movie version of Mary Shelley's Frankenstein) were produced by Tesla's old rival, Thomas Edison. There are at least two films describing Tesla's life. In the first, arranged for TV, Tesla was portrayed by Rade Šerbedžija. In 1980, Orson Welles produced a Yugoslavian film named Tajna Nikole Tesle (The Secret of Nikola Tesla), in which Welles himself played the part of Tesla's patron, George Westinghouse.

Seized records

According to FBI documents acquired via FOIA request, the sum of Tesla's possessions ("consisting of about two truckloads of material... [and] approximately thirty barrels and bundles") were seized, upon his death in 1943, by agents of the (now defunct) Office of Alien Property Custodian. One document states that "[he] is reported to have some 80 trunks in different places containing transcripts and plans having to do with his experiments... "

Views on war

Tesla believed that war could not be avoided until the cause for its recurrence was removed, but was opposed to wars in general. He possessed a hatred of war, from his parents and homeland, and sought to end warfare scientifically by devising protective measures that would prevent wars. He found exceptions and some justifiable situations where conflict was necessary. He envisioned wars of machines, not of humans, and of more terrible weapons in the future. He sought to reduce distance, such as in communication (for better understanding), transportation, and transmission of energy, as a means to insure friendly international relations. A system for "Projecting Concentrated Non-Dispersive Energy Through Natural Media" known as teleforce was reportedly developed later in his life. Teleforce was supposed to have been a type of defensive particle-beam weapon.

See also

Quotations