Exponential | |
---|---|

General information | |

General definition | |

Motivation of invention | Analytic proofs |

Fields of application | Pure and applied mathematics |

Domain and Range | |

Domain | |

Codomain | |

Specific values | |

At zero | 1 |

Value at 1 | e |

Specific features | |

Fixed point | −W_{n}(−1) for |

Related functions | |

Reciprocal | |

Inverse | Complex logarithm |

Derivative | |

Antiderivative | |

Series definition | |

Taylor series |

The **exponential function** is a mathematical function denoted by or (where the argument x is written as an exponent). It can be defined in several equivalent ways. Its ubiquitous occurrence in pure and applied mathematics has led mathematician W. Rudin to opine that the exponential function is "the most important function in mathematics".^{[1]} Its value at 1, is a mathematical constant called Euler's number.

The exponential function equals its own derivative. Thus, it appears in the solutions of many differential equations.

Moreover, it satisfies the identity

which, along with the definition , shows that for positive integers n, relating the exponential function to the elementary notion of exponentiation.

The argument of the exponential function can be any real or complex number. This allows one to extend the concept of exponentiation (which would normally be defined only for integer exponents as: for integer n) to real or complex exponents, by defining for positive a and real or complex x.^{[2]} The exponential of a complex argument is closely related to trigonometry as shown by Euler's formula. The argument can even be an entirely different kind of mathematical object (for example, a square matrix).

In applied settings, exponential functions model a relationship in which a constant change in the independent variable gives the same proportional change (that is, percentage increase or decrease) in the dependent variable. This occurs widely in the natural and social sciences, as in a self-reproducing population, a fund accruing compound interest, or a growing body of manufacturing expertise. Thus, the exponential function also appears in a variety of contexts within physics, computer science, chemistry, engineering, mathematical biology, and economics.

Part of a series of articles on the |

mathematical constant e |
---|

Properties |

Applications |

Defining e |

People |

Related topics |

The real exponential function is a bijection from to .^{[3]} Its inverse function is the natural logarithm, denoted ^{[nb 1]} ^{[nb 2]} or because of this, some old texts^{[4]} refer to the exponential function as the **antilogarithm**.

*The* exponential function is sometimes called the **natural exponential function** for distinguishing it from the other *exponential functions*, which are the functions of the form where the base b is a positive real number. The definition for positive b and real or complex x establishes a strong relationship between these functions, which explains this ambiguous terminology.

The graph of is upward-sloping, and increases faster as x increases.^{[5]} The graph always lies above the x-axis, but becomes arbitrarily close to it for large negative x; thus, the x-axis is a horizontal asymptote. The equation means that the slope of the tangent to the graph at each point is equal to its y-coordinate at that point.

The exponential function is sometimes called the *natural exponential function* for distinguishing it from the other exponential functions. The study of any exponential function can easily be reduced to that of the natural exponential function, since per definition, for positive b,

As functions of a real variable, exponential functions are uniquely characterized by the fact that the derivative of such a function is directly proportional to the value of the function. The constant of proportionality of this relationship is the natural logarithm of the base b:

For *b* > 1, the function is increasing (as depicted for *b* = *e* and *b* = 2), because makes the derivative always positive; while for *b* < 1, the function is decreasing (as depicted for *b* = 1/2); and for *b* = 1 the function is constant.

Euler's number *e* = 2.71828... is the unique base for which the constant of proportionality is 1, since , so that the function is its own derivative:

This function, also denoted as exp *x*, is called the "natural exponential function",^{[6]}^{[7]} or simply "the exponential function". Since any exponential function can be written in terms of the natural exponential as , it is computationally and conceptually convenient to reduce the study of exponential functions to this particular one. The natural exponential is hence denoted by

- or

The former notation is commonly used for simpler exponents, while the latter is preferred when the exponent is a complicated expression.

For real numbers c and d, a function of the form is also an exponential function, since it can be rewritten as

Main article: Characterizations of the exponential function |

The real exponential function can be characterized in a variety of equivalent ways. It is commonly defined by the following power series:^{[1]}^{[8]}

Since the radius of convergence of this power series is infinite, this definition is, in fact, applicable to all complex numbers (see § Complex plane for the extension of to the complex plane). The constant e can then be defined as

The term-by-term differentiation of this power series reveals that for all real x, leading to another common characterization of as the unique solution of the differential equation

satisfying the initial condition

Based on this characterization, the chain rule shows that its inverse function, the natural logarithm, satisfies for or This relationship leads to a less common definition of the real exponential function as the solution to the equation

By way of the binomial theorem and the power series definition, the exponential function can also be defined as the following limit:^{[9]}^{[8]}

It can be shown that every continuous, nonzero solution of the functional equation is an exponential function, with

The exponential function arises whenever a quantity grows or decays at a rate proportional to its current value. One such situation is continuously compounded interest, and in fact it was this observation that led Jacob Bernoulli in 1683^{[10]} to the number

now known as *e*. Later, in 1697, Johann Bernoulli studied the calculus of the exponential function.^{[10]}

If a principal amount of 1 earns interest at an annual rate of *x* compounded monthly, then the interest earned each month is *x*/12 times the current value, so each month the total value is multiplied by (1 + *x*/12), and the value at the end of the year is (1 + *x*/12)^{12}. If instead interest is compounded daily, this becomes (1 + *x*/365)^{365}. Letting the number of time intervals per year grow without bound leads to the limit definition of the exponential function,

first given by Leonhard Euler.^{[9]}
This is one of a number of characterizations of the exponential function; others involve series or differential equations.

From any of these definitions it can be shown that the exponential function obeys the basic exponentiation identity,

which justifies the notation *e*^{x} for exp *x*.

The derivative (rate of change) of the exponential function is the exponential function itself. More generally, a function with a rate of change *proportional* to the function itself (rather than equal to it) is expressible in terms of the exponential function. This function property leads to exponential growth or exponential decay.

The exponential function extends to an entire function on the complex plane. Euler's formula relates its values at purely imaginary arguments to trigonometric functions. The exponential function also has analogues for which the argument is a matrix, or even an element of a Banach algebra or a Lie algebra.

The importance of the exponential function in mathematics and the sciences stems mainly from its property as the unique function which is equal to its derivative and is equal to 1 when *x* = 0. That is,

Functions of the form *ce*^{x} for constant *c* are the only functions that are equal to their derivative (by the Picard–Lindelöf theorem). Other ways of saying the same thing include:

- The slope of the graph at any point is the height of the function at that point.
- The rate of increase of the function at
*x*is equal to the value of the function at*x*. - The function solves the differential equation
*y*′ =*y*. - exp is a fixed point of derivative as a functional.

If a variable's growth or decay rate is proportional to its size—as is the case in unlimited population growth (see Malthusian catastrophe), continuously compounded interest, or radioactive decay—then the variable can be written as a constant times an exponential function of time. Explicitly for any real constant *k*, a function *f*: **R** → **R** satisfies *f*′ = *kf* if and only if *f*(*x*) = *ce*^{kx} for some constant *c*. The constant *k* is called the **decay constant**, **disintegration constant**,^{[11]} **rate constant**,^{[12]} or **transformation constant**.^{[13]}

Furthermore, for any differentiable function *f*, we find, by the chain rule:

A continued fraction for *e*^{x} can be obtained via an identity of Euler:

The following generalized continued fraction for *e*^{z} converges more quickly:^{[14]}

or, by applying the substitution *z* = *x*/*y*:

with a special case for *z* = 2:

This formula also converges, though more slowly, for *z* > 2. For example:

As in the real case, the exponential function can be defined on the complex plane in several equivalent forms. The most common definition of the complex exponential function parallels the power series definition for real arguments, where the real variable is replaced by a complex one:

Alternatively, the complex exponential function may defined by modelling the limit definition for real arguments, but with the real variable replaced by a complex one:

For the power series definition, term-wise multiplication of two copies of this power series in the Cauchy sense, permitted by Mertens' theorem, shows that the defining multiplicative property of exponential functions continues to hold for all complex arguments:

The definition of the complex exponential function in turn leads to the appropriate definitions extending the trigonometric functions to complex arguments.

In particular, when *z* = *it* (t real), the series definition yields the expansion

In this expansion, the rearrangement of the terms into real and imaginary parts is justified by the absolute convergence of the series. The real and imaginary parts of the above expression in fact correspond to the series expansions of cos *t* and sin *t*, respectively.

This correspondence provides motivation for *defining* cosine and sine for all complex arguments in terms of and the equivalent power series:^{[15]}

The functions exp, cos, and sin so defined have infinite radii of convergence by the ratio test and are therefore entire functions (that is, holomorphic on ). The range of the exponential function is , while the ranges of the complex sine and cosine functions are both in its entirety, in accord with Picard's theorem, which asserts that the range of a nonconstant entire function is either all of , or excluding one lacunary value.

These definitions for the exponential and trigonometric functions lead trivially to Euler's formula:

- .

We could alternatively define the complex exponential function based on this relationship. If *z* = *x* + *iy*, where x and y are both real, then we could define its exponential as

where exp, cos, and sin on the right-hand side of the definition sign are to be interpreted as functions of a real variable, previously defined by other means.^{[16]}

For , the relationship holds, so that for real and maps the real line (mod 2*π*) to the unit circle in the complex plane. Moreover, going from to , the curve defined by traces a segment of the unit circle of length

- ,

starting from *z* = 1 in the complex plane and going counterclockwise. Based on these observations and the fact that the measure of an angle in radians is the arc length on the unit circle subtended by the angle, it is easy to see that, restricted to real arguments, the sine and cosine functions as defined above coincide with the sine and cosine functions as introduced in elementary mathematics via geometric notions.

The complex exponential function is periodic with period 2*πi* and holds for all .

When its domain is extended from the real line to the complex plane, the exponential function retains the following properties:

- .

Extending the natural logarithm to complex arguments yields the complex logarithm log *z*, which is a multivalued function.

We can then define a more general exponentiation:

for all complex numbers *z* and *w*. This is also a multivalued function, even when *z* is real. This distinction is problematic, as the multivalued functions log *z* and *z*^{w} are easily confused with their single-valued equivalents when substituting a real number for *z*. The rule about multiplying exponents for the case of positive real numbers must be modified in a multivalued context:

- (
*e*)^{z}^{w}_{}≠*e*, but rather (^{zw}*e*)^{z}^{w}_{}=*e*^{(z + 2niπ)w}multivalued over integers*n*

See failure of power and logarithm identities for more about problems with combining powers.

The exponential function maps any line in the complex plane to a logarithmic spiral in the complex plane with the center at the origin. Two special cases exist: when the original line is parallel to the real axis, the resulting spiral never closes in on itself; when the original line is parallel to the imaginary axis, the resulting spiral is a circle of some radius.

Considering the complex exponential function as a function involving four real variables:

the graph of the exponential function is a two-dimensional surface curving through four dimensions.

Starting with a color-coded portion of the domain, the following are depictions of the graph as variously projected into two or three dimensions.

The second image shows how the domain complex plane is mapped into the range complex plane:

- zero is mapped to 1
- the real axis is mapped to the positive real axis
- the imaginary axis is wrapped around the unit circle at a constant angular rate
- values with negative real parts are mapped inside the unit circle
- values with positive real parts are mapped outside of the unit circle
- values with a constant real part are mapped to circles centered at zero
- values with a constant imaginary part are mapped to rays extending from zero

The third and fourth images show how the graph in the second image extends into one of the other two dimensions not shown in the second image.

The third image shows the graph extended along the real axis. It shows the graph is a surface of revolution about the axis of the graph of the real exponential function, producing a horn or funnel shape.

The fourth image shows the graph extended along the imaginary axis. It shows that the graph's surface for positive and negative values doesn't really meet along the negative real axis, but instead forms a spiral surface about the axis. Because its values have been extended to ±2*π*, this image also better depicts the 2π periodicity in the imaginary value.

Main article: Exponentiation |

Complex exponentiation *a*^{b} can be defined by converting *a* to polar coordinates and using the identity (*e*^{ln a})^{b}_{} = *a*^{b}:

However, when *b* is not an integer, this function is multivalued, because *θ* is not unique (see failure of power and logarithm identities).

The power series definition of the exponential function makes sense for square matrices (for which the function is called the matrix exponential) and more generally in any unital Banach algebra *B*. In this setting, *e*^{0} = 1, and *e*^{x} is invertible with inverse *e*^{−x} for any *x* in *B*. If *xy* = *yx*, then *e*^{x + y} = *e*^{x}*e*^{y}, but this identity can fail for noncommuting *x* and *y*.

Some alternative definitions lead to the same function. For instance, *e*^{x} can be defined as

Or *e*^{x} can be defined as *f*_{x}(1), where *f*_{x} : **R** → *B* is the solution to the differential equation *df _{x}*/

Given a Lie group *G* and its associated Lie algebra , the exponential map is a map ↦ *G* satisfying similar properties. In fact, since **R** is the Lie algebra of the Lie group of all positive real numbers under multiplication, the ordinary exponential function for real arguments is a special case of the Lie algebra situation. Similarly, since the Lie group GL(*n*,**R**) of invertible *n* × *n* matrices has as Lie algebra M(*n*,**R**), the space of all *n* × *n* matrices, the exponential function for square matrices is a special case of the Lie algebra exponential map.

The identity exp(*x* + *y*) = exp *x* exp *y* can fail for Lie algebra elements *x* and *y* that do not commute; the Baker–Campbell–Hausdorff formula supplies the necessary correction terms.

The function *e*^{z} is not in **C**(*z*) (that is, is not the quotient of two polynomials with complex coefficients).

For *n* distinct complex numbers {*a*_{1}, …, *a*_{n}}, the set {*e*^{a1z}, …, *e*^{anz}} is linearly independent over **C**(*z*).

The function *e*^{z} is transcendental over **C**(*z*).

When computing (an approximation of) the exponential function near the argument 0, the result will be close to 1, and computing the value of the difference with floating-point arithmetic may lead to the loss of (possibly all) significant figures, producing a large calculation error, possibly even a meaningless result.

Following a proposal by William Kahan, it may thus be useful to have a dedicated routine, often called `expm1`

, for computing *e ^{x}* − 1 directly, bypassing computation of

one may use the Taylor series of

This was first implemented in 1979 in the Hewlett-Packard HP-41C calculator, and provided by several calculators,^{[17]}^{[18]} operating systems (for example Berkeley UNIX 4.3BSD^{[19]}), computer algebra systems, and programming languages (for example C99).^{[20]}

In addition to base *e*, the IEEE 754-2008 standard defines similar exponential functions near 0 for base 2 and 10: and .

A similar approach has been used for the logarithm (see lnp1).^{[nb 3]}

An identity in terms of the hyperbolic tangent,

gives a high-precision value for small values of *x* on systems that do not implement expm1(*x*).