This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may require cleanup to meet Wikipedia's quality standards. The specific problem is: content is non-encyclopedic in scope and level of expertise exhibited, and lacks inline citation of any of many available substantial secondary sources. Please help improve this article if you can. (May 2014) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Extraction" chemistry – news · newspapers · books · scholar · JSTOR (May 2011) (Learn how and when to remove this message) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (May 2014) This article may have too many section headers. Please help consolidate the article. (June 2015) (Learn how and when to remove this message) (Learn how and when to remove this message)
Schematic of a separatory funnel showing two immiscible liquids, where 1 is any phase less dense than 2. Phase 1 is typically an organic solvent and 2 an aqueous phase.
Laboratory-scale liquid-liquid extraction. Photograph of a separatory funnel in a laboratory scale extraction of 2 immiscible liquids: liquids are a diethyl ether upper phase, and a lower aqueous phase.
Soxhlet extractor

Extraction in chemistry is a separation process consisting of the separation of a substance from a matrix. The distribution of a solute between two phases is an equilibrium condition described by partition theory. This is based on exactly how the analyte moves from the initial solvent into the extracting solvent. The term washing may also be used to refer to an extraction in which impurities are extracted from the solvent containing the desired compound.

Types of extraction

Laboratory applications and examples

Liquid-liquid extractions in the laboratory usually make use of a separatory funnel, where two immiscible phases are combined to separate a solute from one phase into the other, according to the relative solubility in each of the phases. Typically, this will be to extract organic compounds out of an aqueous phase and into an organic phase, but may also include extracting water-soluble impurities from an organic phase into an aqueous phase.[1][2]

Common extractants may be arranged in increasing order of polarity according to the Hildebrand solubility parameter:

ethyl acetate < acetone < ethanol < methanol < acetone:water (7:3) < ethanol:water (8:2) < methanol:water (8:2) < water

Solid-liquid extractions at laboratory scales can use Soxhlet extractors. A solid sample containing the desired compound along with impurities is placed in the thimble. An extracting solvent is chosen in which the impurities are insoluble and the desired compound has at least limited solubility. The solvent is refluxed and condensed solvent falls into the thimble and dissolves the desired compound which then passes back through the filter into the flask. After extraction is complete the solvent can be removed and the desired product collected.

Everyday applications and examples

Boiling tea leaves in water extracts the tannins, theobromine, and caffeine out of the leaves and into the water, as an example of a solid-liquid extraction.

Decaffeination of tea and coffee is also an example of an extraction, where the caffeine molecules are removed from the tea leaves or coffee beans, often utilising supercritical fluid extraction with CO2 or standard solid-liquid extraction techniques.[3]

See also


  1. ^ "4: Extraction". Chemistry LibreTexts. 2017-10-05. Retrieved 2019-11-10.
  2. ^ Zubrick, James W. (2014). The organic chem lab survival manual : a student's guide to techniques (Ninth ed.). Hoboken: John Wiley & Sons. pp. 127–144. ISBN 9781118083390. OCLC 798220947.
  3. ^ Ramalakshmi, K.; Raghavan, B. (1999). "Caffeine in Coffee: Its Removal. Why and How?". Critical Reviews in Food Science and Nutrition. 39 (5): 441–456. doi:10.1080/10408699991279231. ISSN 1040-8398. PMID 10516914.

Further reading