George Wetherill
Born(1925-08-12)12 August 1925
Died19 July 2006(2006-07-19) (aged 80)
Known for
  • Phyllis Steiss Wetherill
  • Mary Bailey
ChildrenRachel Wetherill
Sarah Wetherill Okumura
George W. Wetherill III
Scientific career
FieldsAstrophysics, Geology

George Wetherill (August 12, 1925 Philadelphia, Pennsylvania – July 19, 2006 Washington, D.C.) was a physicist and geologist and the director emeritus of the department of terrestrial magnetism at the Carnegie Institution of Washington, DC, US.[1][2]

In 2000, Wetherill received the J. Lawrence Smith Medal from the National Academy of Sciences "For his unique contributions to the cosmochronology of the planets and meteorites and to the orbital dynamics and formation of solar system bodies."[3] In 2003, Wetherill received the Henry Norris Russell Lectureship, the highest honor bestowed by the American Astronomical Society, "For pioneering the application of modern physics and numerical simulations to the formation and evolution of terrestrial planets."[4]

Early life and education

George Wetherill was born on August 12, 1925, in Philadelphia, Pennsylvania. Wetherill benefited from the G.I. Bill to receive four degrees, the Ph.B. (1948), S.B. (1949), S.M. (1951), and Ph.D., in physics (1953), all from the University of Chicago. He did his thesis research on the spontaneous fission of uranium, as well as nuclear processes in nature, as a U.S. Atomic Energy Commission Predoctoral Fellow.[5]

Career and achievements

Department of Terrestrial Magnetism, 1953-1960

After receiving his Ph.D., Wetherill became a staff member at Carnegie's Department of Terrestrial Magnetism (DTM) in Washington, D.C. There, he joined an interdepartmental group who were working to date rocks using geochemical methods that measured natural radioactive decay. This involved determining the concentration and isotopic composition of inert gases such as argon, as well as the isotopes of strontium and lead.[1]

Wetherill originated the concept of the Concordia Diagram for the uranium-lead isotopic system; this diagram became the standard means for determining precise ages of rocks, and of detecting the possibility of metamorphism. It provides a basis for high-precision geochronology of rocks dating back through the history of the planet Earth.[1]

Wetherill was also a member of the Carnegie group that accurately determined the decay constants of potassium and rubidium, an effort that has also become fundamental to the measurement of geological time.[1][6]

University of California, Los Angeles

Wetherill left DTM in 1960 to become a professor of geophysics and geology at the University of California, Los Angeles. There, he served as chairman of the interdepartmental curriculum in geochemistry (1964-1968), and as chairman of the Department of Planetary and Space Sciences (1968-1972).[7]

At UCLA, Wetherill further explored techniques for age-dating, examining extraterrestrial material with radiometric chronology techniques to meteorite and lunar samples. At the same time, he began to theorize about the origin of meteorites. His studies concentrated on collisions between objects in the asteroid belt together with resonances between their motions and those of planets. He computed how these events could move material into Earth-crossing orbits to become meteorites or larger Earth-impacting bodies responsible for the devastating impacts that caused mass extinctions of the majority of living species, including the dinosaurs.[7]

Later, Wetherill, along with scientists elsewhere, proposed that a certain unusual class of meteorites was not asteroidal in origin but instead came from the planet Mars. This was later confirmed by laboratory work elsewhere and is now well accepted.[7]

Department of Terrestrial Magnetism, 1975-

In 1975, Wetherill returned to Carnegie's Department of Terrestrial Magnetism as director. He remained director until 1991, when he became a staff member. At DTM, he began extending his research efforts into questions concerning the origin of the terrestrial planets--Mercury, Venus, Earth, and Mars. He was stimulated by earlier studies by Victor Safronov (O. Yu. Schmidt Institute, Moscow), who showed that as a swarm of planetesimals coagulated into large bodies the swarm could evolve to produce a few terrestrial planets. Wetherill developed a technique to calculate numerically the orbital evolution and accumulation of planetesimal swarms, and he used the technique to reach specific predictions of the physical and orbital properties of terrestrial planets. His results agreed well with present observations.[8]

In addition to showing how the inner solar system formed, Wetherill's work provided the basis for a model of a giant-impact origin for the Moon[9] and the core of Mercury.[10] It also led to explanations for the isotopic abundances of present-day planetary atmospheres.[11]

Wetherill has shown that Jupiter plays an important role in the evolution of the Solar System; by ejecting comets from the solar system, it offers a protective presence to the inner planets.[7] Wetherill's theoretical work supports discussions on the origins of the Solar System as well as on extrasolar planets.[12][13]

Community engagement

Wetherill provided leadership in the scientific community by serving on advisory committees for NASA, the National Academy of Sciences,[14] and the National Science Foundation. For 15 years, he was editor of the Annual Review of Earth and Planetary Sciences.[15]

He served as president of the Meteoritical Society, the Geochemical Society, the Planetology Section of the American Geophysical Union, the International Association of Geochemistry and Cosmochemistry,[16] and was a member of the American Philosophical Society.[17]

Wetherill died at his home in Washington, D.C Wednesday, July 19, 2006, after a long illness.[18][19]



  1. ^ a b c d Pearce, Jeremy (2006-07-28). "George W. Wetherill, 80, Expert on Dating of Rocks, Dies". The New York Times. ISSN 0362-4331. Retrieved 2021-08-18.
  2. ^ a b "George W. Wetherill". National Science and Technology Medals Foundation. Retrieved 2021-08-18.
  3. ^ a b "J. Lawrence Smith Medal". National Academy of Sciences. Retrieved 10 May 2022.
  4. ^ a b "Henry Norris Russell Lectureship". American Astronomical Society. Retrieved 10 May 2022.
  5. ^ "Wetherill, George West - Niels Bohr Library & Archives". American Institute of Physics. Retrieved 2021-08-18.
  6. ^ Wetherill, George W. (1998). "Contemplation of Things Past". Annual Review of Earth and Planetary Sciences. 26 (1): 1–21. Bibcode:1998AREPS..26....1W. doi:10.1146/ ISSN 0084-6597.
  7. ^ a b c d Holley, Joe (2006-07-22). "George Wetherill". Washington Post. ISSN 0190-8286. Retrieved 2021-08-18.
  8. ^ Henbest, Nigel. "Science: Are there lots of Earths out there?". New Scientist. Retrieved 2021-08-18.
  9. ^ Melosh, H. J. (13 September 2014). "New approaches to the Moon's isotopic crisis". Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences. 372 (2024): 20130168. Bibcode:2014RSPTA.37230168M. doi:10.1098/rsta.2013.0168. PMC 4128260. PMID 25114301.
  10. ^ Spalding, Christopher; Adams, Fred C. (1 March 2020). "The Solar Wind Prevents Reaccretion of Debris after Mercury's Giant Impact". The Planetary Science Journal. 1 (1): 7. arXiv:2002.07847. Bibcode:2020PSJ.....1....7S. doi:10.3847/psj/ab781f. ISSN 2632-3338. S2CID 211171488.
  11. ^ Lupu, R. E.; Zahnle, Kevin; Marley, Mark S.; Schaefer, Laura; Fegley, Bruce; Morley, Caroline; Cahoy, Kerri; Freedman, Richard; Fortney, Jonathan J. (28 February 2014). "The Atmospheres of Earthlike Planets After Giant Impact Events". The Astrophysical Journal. 784 (1): 27. arXiv:1401.1499. Bibcode:2014ApJ...784...27L. doi:10.1088/0004-637x/784/1/27. hdl:1721.1/92946. ISSN 0004-637X. S2CID 10033333. Retrieved 12 May 2022.
  12. ^ Ksanfomaliti, L. V. (1 November 2000). "Extrasolar Planetary Systems". Solar System Research. 34 (6): 481–495. doi:10.1023/A:1005218112981. ISSN 1608-3423. S2CID 117713002.
  13. ^ Wetherill, G. W. (1 January 1996). "The Formation and Habitability of Extra-Solar Planets". Icarus. 119 (1): 219–238. Bibcode:1996Icar..119..219W. doi:10.1006/icar.1996.0015. ISSN 0019-1035.
  14. ^ a b "George W. Wetherill". Retrieved 2021-12-07.
  15. ^ Jeanloz, Raymond (May 1997). "Preface". Annual Review of Earth and Planetary Sciences. 25 (1): annurev.ea.25.092506.100001. doi:10.1146/annurev.ea.25.092506.100001.
  17. ^ "APS Member History". Retrieved 2021-12-07.
  18. ^ "George Wetherill". Retrieved 2021-08-18.
  19. ^ "Father of Earth-formation models, Carnegie's George Wetherill, dies at 80". Carnegie Institution for Science. 21 July 2006. Retrieved 10 May 2022.
  20. ^ "Science Academy Elects 96 Members". The New York Times. 28 April 1974. Retrieved 10 May 2022.
  21. ^ "Leonard Medalists". The Meteoritical Society. Retrieved 10 May 2022.
  22. ^ "G.K. Gilbert Award - Planetary Geology Division". The Geological Society of America, Inc. Retrieved 10 May 2022.
  23. ^ "Gerard P. Kuiper Prize in Planetary Sciences | Division for Planetary Sciences". American Astronomical Society. Retrieved 10 May 2022.
  24. ^ Anonymous (1992). "Wetherill receives 1991 Hess award". Eos, Transactions American Geophysical Union. 73 (12): 131. doi:10.1029/91EO00111.
  25. ^ "Recipients Of The 1997 National Medal Of Science". Retrieved 10 May 2022.