Venus in approximately true colour, a nearly uniform pale cream, although the image has been processed to bring out details.[1] The planet's disc is about three-quarters illuminated. Almost no variation or detail can be seen in the clouds.
A real-colour image of Venus taken by Mariner 10 processed from two filters. The surface is obscured by thick sulfur dioxide clouds.
AdjectivesVenusian or (rarely) Cytherean, Venerean
SymbolThe Venusian symbol, a circle with a small equal-armed cross beneath it
Orbital characteristics[2][3]
Epoch J2000
  • 0.728213 AU
  • 108,939,000 km
  • 0.718440 AU
  • 107,477,000 km
  • 0.723332 AU
  • 108,208,000 km
Eccentricity0.006772 [4]
583.92 days[2]
35.02 km/s
76.680° [4]
Physical characteristics
Mean radius
  • 6,051.8±1.0 km[6]
  • 0.9499 Earths
  • 4.6023×108 km2
  • 0.902 Earths
  • 9.2843×1011 km3
  • 0.866 Earths
  • 4.8675×1024 kg[7]
  • 0.815 Earths
Mean density
5.243 g/cm3
  • 8.87 m/s2
  • 0.904 g
10.36 km/s (6.44 mi/s)[8]
−243.025 d (retrograde)[2]
Equatorial rotation velocity
6.52 km/h (1.81 m/s)
2.64° (for retrograde rotation)
177.36° (to orbit)[2][note 1]
North pole right ascension
  • 18h 11m 2s
  • 272.76°[9]
North pole declination
Surface temp. min mean max
Kelvin 737 K[2]
Celsius 462 °C
9.7″ to 66.0″[2]
Surface pressure
92 bar (9.2 MPa)
Composition by volume
  1. ^ Defining the rotation as retrograde, as done by NASA space missions and the USGS, puts Ishtar Terra in the northern hemisphere and makes the axial tilt 2.64°. Following the right-hand rule for prograde rotation puts Ishtar Terra in the southern hemisphere and makes the axial tilt 177.36°.

Venus is the second planet from the Sun, orbiting it every 224.7 Earth days.[14] It has no natural satellite. It is named after the Roman goddess of love and beauty. After the Moon, it is the brightest natural object in the night sky, reaching an apparent magnitude of −4.6, bright enough to cast shadows.[15] Because Venus is an inferior planet from Earth, it never appears to venture far from the Sun: its elongation reaches a maximum of 47.8°.

Venus is a terrestrial planet and is sometimes called Earth's "sister planet" because of their similar size, mass, proximity to the Sun and bulk composition. It is radically different from Earth in other respects. It has the densest atmosphere of the four terrestrial planets, consisting of more than 96% carbon dioxide. The atmospheric pressure at the planet's surface is 92 times that of Earth. With a mean surface temperature of 735 K (462 °C; 863 °F), Venus is by far the hottest planet in the Solar System, even though Mercury is closer to the Sun. Venus is shrouded by an opaque layer of highly reflective clouds of sulfuric acid, preventing its surface from being seen from space in visible light. It may have had oceans in the past,[16][17] but these would have vaporized as the temperature rose due to a runaway greenhouse effect.[18] The water has most probably photodissociated, and, because of the lack of a planetary magnetic field, the free hydrogen has been swept into interplanetary space by the solar wind.[19] Venus's surface is a dry desertscape interspersed with slab-like rocks and periodically refreshed by volcanism.

Physical characteristics

Venus, without its atmosphere, is placed side by side with Earth. They are nearly the same size, though Venus is slightly smaller.
Size comparison with Earth

Venus is one of the four terrestrial planets in the Solar System, meaning that, like Earth, it is a rocky body. In size and mass, it is similar to Earth, and is often described as Earth's "sister" or "twin".[20] The diameter of Venus is 12,092 km (only 650 km less than Earth's) and its mass is 81.5% of Earth's. Conditions on the Venusian surface differ radically from those on Earth because of its dense carbon dioxide atmosphere. The mass of the atmosphere of Venus is 96.5% carbon dioxide, with most of the remaining 3.5% being nitrogen.[21]


The Venusian surface was a subject of speculation until some of its secrets were revealed by planetary science in the 20th century. It was finally mapped in detail by Magellan in 1990–91. The ground shows evidence of extensive volcanism, and the sulfur in the atmosphere may indicate there have been some recent eruptions.[22][23]

About 80% of the Venusian surface is covered by smooth, volcanic plains, consisting of 70% plains with wrinkle ridges and 10% smooth or lobate plains.[24] Two highland "continents" make up the rest of its surface area, one lying in the planet's northern hemisphere and the other just south of the equator. The northern continent is called Ishtar Terra, after Ishtar, the Babylonian goddess of love, and is about the size of Australia. Maxwell Montes, the highest mountain on Venus, lies on Ishtar Terra. Its peak is 11 km above the Venusian average surface elevation. The southern continent is called Aphrodite Terra, after the Greek goddess of love, and is the larger of the two highland regions at roughly the size of South America. A network of fractures and faults covers much of this area.[25]

The absence of evidence of lava flow accompanying any of the visible caldera remains an enigma. The planet has few impact craters, demonstrating the surface is relatively young, approximately 300–600 million years old.[26][27] In addition to the impact craters, mountains, and valleys commonly found on rocky planets, Venus has some unique surface features. Among these are flat-topped volcanic features called "farra", which look somewhat like pancakes and range in size from 20 to 50 km across, and from 100 to 1,000 m high; radial, star-like fracture systems called "novae"; features with both radial and concentric fractures resembling spider webs, known as "arachnoids"; and "coronae", circular rings of fractures sometimes surrounded by a depression. These features are volcanic in origin.[28]

Most Venusian surface features are named after historical and mythological women.[29] Exceptions are Maxwell Montes, named after James Clerk Maxwell, and highland regions Alpha Regio, Beta Regio and Ovda Regio. The latter three features were named before the current system was adopted by the International Astronomical Union, the body that oversees planetary nomenclature.[30]

The longitudes of physical features on Venus are expressed relative to its prime meridian. The original prime meridian passed through the radar-bright spot at the center of the oval feature Eve, located south of Alpha Regio.[31] After the Venera missions were completed, the prime meridian was redefined to pass through the central peak in the crater Ariadne.[32][33]

Surface geology

Main articles: Geology of Venus and Volcanology of Venus

Image is false color, with Maat Mons represented in hues of gold and fiery red, against a black background
False color image of Maat Mons with a vertical exaggeration of 22.5

Much of the Venusian surface appears to have been shaped by volcanic activity. Venus has several times as many volcanoes as Earth, and it has 167 large volcanoes that are over 100 km across. The only volcanic complex of this size on Earth is the Big Island of Hawaii.[28]: 154  This is not because Venus is more volcanically active than Earth, but because its crust is older. Earth's oceanic crust is continually recycled by subduction at the boundaries of tectonic plates, and has an average age of about 100 million years,[34] whereas the Venusian surface is estimated to be 300–600 million years old.[26][28]

Several lines of evidence point to ongoing volcanic activity on Venus. During the Soviet Venera program, the Venera 9 and Venera 10 orbiters obtained optical and electromagnetic evidence of lightning on Venus,[35][36] and the Venera 12 descent probe recorded a powerful clap of thunder soon after it landed.[37] The European Space Agency's Venus Express in 2007 detected whistler waves further confirming the occurrence of lightning on Venus.[38][39] Although rainfall drives thunderstorms on Earth, there is no rainfall on the surface of Venus (though sulfuric acid rain falls in the upper atmosphere, then evaporates around 25 km above the surface). One possibility is that ash from a volcanic eruption was generating the lightning. Another piece of evidence comes from measurements of sulfur dioxide concentrations in the atmosphere, which dropped by a factor of 10 between 1978 and 1986, jumped in 2006, and again declined 10-fold.[40] This may mean that levels had been boosted several times by large volcanic eruptions.[41][42]

In 2008 and 2009, the first direct evidence for ongoing volcanism was observed by Venus Express, in the form of four transient localized infrared hot spots within the rift zone Ganis Chasma,[43][n 1] near the shield volcano Maat Mons. Three of the spots were observed in more than one successive orbit. These spots are thought to represent lava freshly released by volcanic eruptions.[44][45] The actual temperatures are not known, because the size of the hot spots could not be measured, but are likely have been in the 800–1100 K range, relative to a normal temperature of 740 K.[46]

The plains of Venus are outlined in red and gold, with imact craters leaving golden rings across the surface
Impact craters on the surface of Venus (false color image reconstructed from radar data)

Almost a thousand impact craters on Venus are evenly distributed across its surface. On other cratered bodies, such as Earth and the Moon, craters show a range of states of degradation. On the Moon, degradation is caused by subsequent impacts, whereas on Earth it is caused by wind and rain erosion. On Venus, about 85% of the craters are in pristine condition. The number of craters, together with their well-preserved condition, indicates the planet underwent a global resurfacing event about 300–600 million years ago,[26][27] followed by a decay in volcanism.[47] Whereas Earth's crust is in continuous motion, Venus is thought to be unable to sustain such a process. Without plate tectonics to dissipate heat from its mantle, Venus instead undergoes a cyclical process in which mantle temperatures rise until they reach a critical level that weakens the crust. Then, over a period of about 100 million years, subduction occurs on an enormous scale, completely recycling the crust.[28]

Venusian craters range from 3 km to 280 km in diameter. No craters are smaller than 3 km, because of the effects of the dense atmosphere on incoming objects. Objects with less than a certain kinetic energy are slowed down so much by the atmosphere that they do not create an impact crater.[48] Incoming projectiles less than 50 metres in diameter will fragment and burn up in the atmosphere before reaching the ground.[49]

Internal structure

Venus is represented without its atmosphere; the mantle (red) is slightly larger than the core (yellow)
The internal structure of Venus – the crust (outer layer), the mantle (middle layer) and the core (yellow inner layer)

Without seismic data or knowledge of its moment of inertia, little direct information is available about the internal structure and geochemistry of Venus.[50] The similarity in size and density between Venus and Earth suggests they share a similar internal structure: a core, mantle, and crust. Like that of Earth, the Venusian core is at least partially liquid because the two planets have been cooling at about the same rate.[51] The slightly smaller size of Venus suggests pressures are significantly lower in its deep interior than Earth's. The principal difference between the two planets is the lack of evidence for plate tectonics on Venus, possibly because its crust is too strong to subduct without water to make it less viscous. This results in reduced heat loss from the planet, preventing it from cooling and providing a likely explanation for its lack of an internally generated magnetic field.[52] Instead, Venus may lose its internal heat in periodic major resurfacing events.[26]

Atmosphere and climate

The atmosphere of Venus appears darker and lined with shadows. The shadows trace the prevailing wind direction.
Cloud structure in the Venusian atmosphere in 1979, revealed by observations in the ultraviolet band by Pioneer Venus Orbiter
A false-colour image of Venus: ribbons of lighter colour stretch haphazardly across the surface. Plainer areas of more even colouration lie between.
Global radar view of Venus (without the clouds) from Magellan between 1990 and 1994

Main article: Atmosphere of Venus

Venus has an extremely dense atmosphere, which consists mainly of carbon dioxide and a small amount of nitrogen. The mass of its atmosphere is 93 times that of Earth's, whereas the pressure at its surface is about 92 times that at Earth's—a pressure equivalent to that at a depth of nearly 1 kilometre under Earth's oceans. The density at the surface is 65 kg/m3, 6.5% that of water or 50 times as dense as Earth's atmosphere at 20 °C at sea level. The CO2-rich atmosphere, along with thick clouds of sulfur dioxide, generates the strongest greenhouse effect in the Solar System, creating surface temperatures of at least 735 K (462 °C).[14][53] This makes Venus's surface hotter than Mercury's, which has a minimum surface temperature of 55 K (−220 °C) and maximum surface temperature of 695 K (420 °C),[54] even though Venus is nearly twice Mercury's distance from the Sun and thus receives only 25% of Mercury's solar irradiance. This temperature is higher than that used for sterilization. The surface of Venus is often said to resemble traditional accounts of Hell.[55][56]

Studies have suggested that billions of years ago Venus's atmosphere was much more like Earth's than it is now, and that there may have been substantial quantities of liquid water on the surface, but after a period of 600 million to several billion years,[57] a runaway greenhouse effect was caused by the evaporation of that original water, which generated a critical level of greenhouse gases in its atmosphere.[58] Although the surface conditions on Venus are no longer hospitable to any Earthlike life that may have formed before this event, there is speculation on the possibility that life exists in the upper cloud layers of Venus, 50 km (31 mi) up from the surface where the temperature ranges between 30 and 80 °C, but the environment is acidic.[59][60][61]

Thermal inertia and the transfer of heat by winds in the lower atmosphere mean that the temperature of Venus's surface does not vary significantly between the night and day sides, despite Venus's extremely slow rotation. Winds at the surface are slow, moving at a few kilometres per hour, but because of the high density of the atmosphere at the surface, they exert a significant amount of force against obstructions, and transport dust and small stones across the surface. This alone would make it difficult for a human to walk through, even if the heat, pressure, and lack of oxygen were not a problem.[62]

Above the dense CO2 layer are thick clouds consisting mainly of sulfur dioxide and sulfuric acid droplets.[63][64] These clouds reflect and scatter about 90% of the sunlight that falls on them back into space, and prevent visual observation of Venus's surface. The permanent cloud cover means that although Venus is closer than Earth to the Sun, its receives less sunlight. Strong 85 m/s (300 km/h) winds at the cloud tops go around Venus about every four to five Earth days.[65] Winds on Venus move at up to 60 times the speed of its rotation, whereas Earth's fastest winds are only 10–20% rotation speed.[66]

The surface of Venus is effectively isothermal; it retains a constant temperature not only between day and night but between the equator and the poles.[2][67] Venus's minute axial tilt—less than 3°, compared to 23° on Earth—also minimizes seasonal temperature variation.[68] The only appreciable variation in temperature occurs with altitude. The highest point on Venus, Maxwell Montes, is therefore the coolest point on Venus, with a temperature of about 655 K (380 °C) and an atmospheric pressure of about 4.5 MPa (45 bar).[69][70] In 1995, the Magellan spacecraft imaged a highly reflective substance at the tops of the highest mountain peaks that bore a strong resemblance to terrestrial snow. This substance arguably formed from a similar process to snow, albeit at a far higher temperature. Too volatile to condense on the surface, it rose in gaseous form to higher elevations, where it is cooler and could precipitate. The identity of this substance is not known with certainty, but speculation has ranged from elemental tellurium to lead sulfide (galena).[71]

The clouds of Venus are capable of producing lightning much like the clouds on Earth.[72] The existence of lightning had been controversial since the first suspected bursts were detected by the Soviet Venera probes. In 2006–2007, Venus Express clearly detected whistler mode waves, the signatures of lightning. Their intermittent appearance indicates a pattern associated with weather activity. The lightning rate is at least half of that on Earth.[72] In 2007, Venus Express discovered that a huge double atmospheric vortex exists at the south pole.[73][74]

Another discovery made by Venus Express in 2011 is that an ozone layer exists high in the atmosphere of Venus.[75]

On 29 January 2013, ESA scientists reported that the ionosphere of Venus streams outwards in a manner similar to "the ion tail seen streaming from a comet under similar conditions."[76][77]

Atmospheric composition
Synthetic stick absorption spectrum of a simple gas mixture corresponding to Earth's atmosphere
Synthetic stick absorption spectrum of a simple gas mixture corresponding to Earth's atmosphere
The composition of the atmosphere of Venus based on HITRAN data[78] created using Hitran on the Web system.[79]
The composition of the atmosphere of Venus based on HITRAN data[78] created using Hitran on the Web system.[79]
Green colour – water vapour, red – carbon dioxide, WN – wavenumber (other colours have different meanings, lower wavelengths on the right, higher on the left).

Magnetic field and core

In 1967, Venera 4 found the Venusian magnetic field to be much weaker than that of Earth. This magnetic field is induced by an interaction between the ionosphere and the solar wind,[80][81] rather than by an internal dynamo in the core like the one inside Earth. Venus's small induced magnetosphere provides negligible protection to the atmosphere against cosmic radiation. This radiation may result in cloud-to-cloud lightning discharges.[82]

The lack of an intrinsic magnetic field at Venus was surprising given it is similar to Earth in size, and was expected also to contain a dynamo at its core. A dynamo requires three things: a conducting liquid, rotation, and convection. The core is thought to be electrically conductive and, although its rotation is often thought to be too slow, simulations show it is adequate to produce a dynamo.[83][84] This implies the dynamo is missing because of a lack of convection in the Venusian core. On Earth, convection occurs in the liquid outer layer of the core because the bottom of the liquid layer is much hotter than the top. On Venus, a global resurfacing event may have shut down plate tectonics and led to a reduced heat flux through the crust. This caused the mantle temperature to increase, thereby reducing the heat flux out of the core. As a result, no internal geodynamo is available to drive a magnetic field. Instead, the heat from the core is being used to reheat the crust.[85]

One possibility is that Venus has no solid inner core,[86] or that its core is not cooling, so that the entire liquid part of the core is at approximately the same temperature. Another possibility is that its core has already completely solidified. The state of the core is highly dependent on the concentration of sulfur, which is unknown at present.[85]

The weak magnetosphere around Venus means that the solar wind is interacting directly with its outer atmosphere. Here, ions of hydrogen and oxygen are being created by the dissociation of neutral molecules from ultraviolet radiation. The solar wind then supplies energy that gives some of these ions sufficient velocity to escape Venus's gravity field. This erosion process results in a steady loss of low-mass hydrogen, helium, and oxygen ions, whereas higher-mass molecules, such as carbon dioxide, are more likely to be retained. Atmospheric erosion by the solar wind probably led to the loss of most of Venus's water during the first billion years after it formed.[87] The erosion has increased the ratio of higher-mass deuterium to lower-mass hydrogen in the atmosphere 100 times compared to the rest of the solar system.[88]

Orbit and rotation

the orbits of Mercury, Venus, Earth and Mars are seen in motion from the top down against a spiderweb graph. Earth's orbit leaves a blue trail, while Venus's orbit leaves a yellow trail
Venus orbits the Sun at an average distance of about 108 million kilometres (about 0.7 AU) and completes an orbit every 224.7 days. Venus is the second planet from the Sun and orbits the Sun approximately 1.6 times (yellow trail) in Earth's 365 days (blue trail)

Venus orbits the Sun at an average distance of about 0.72 AU (108,000,000 km; 67,000,000 mi), and completes an orbit every 224.7 days. Although all planetary orbits are elliptical, Venus's orbit is the closest to circular, with an eccentricity of less than 0.01.[2] When Venus lies between Earth and the Sun in inferior conjunction, it makes the closest approach to Earth of any planet at an average distance of 41 million km.[2] The planet reaches inferior conjunction every 584 days, on average.[2] Because of the decreasing eccentricity of Earth's orbit, the minimum distances will become greater over tens of thousands of years. From the year 1 to 5383, there are 526 approaches less than 40 million km; then there are none for about 60,158 years.[89]

All the planets in the Solar System orbit the Sun in an anti-clockwise direction as viewed from above Earth's north pole. Most planets also rotate on their axes in an anti-clockwise direction, but Venus rotates clockwise in retrograde rotation once every 243 Earth days—the slowest rotation of any planet. Because its rotation is so slow, Venus is very close to spherical.[90] A Venusian sidereal day thus lasts longer than a Venusian year (243 versus 224.7 Earth days). Venus's equator rotates at 6.5 km/h (4.0 mph), whereas Earth's is approximately 1,670 km/h (1,040 mph).[91] Venus's rotation has slowed down by 6.5 min per Venusian sidereal day in the 16 years between the Magellan spacecraft and Venus Express visits.[92] Because of the retrograde rotation, the length of a solar day on Venus is significantly shorter than the sidereal day, at 116.75 Earth days (making the Venusian solar day shorter than Mercury's 176 Earth days); one Venusian year is about 1.92 Venusian solar days.[93] To an observer on the surface of Venus, the Sun would rise in the west and set in the east, although Venus's opaque clouds prevent observing the Sun from the planet's surface.[93]

Venus may have formed from the solar nebula with a different rotation period and obliquity, reaching its current state because of chaotic spin changes caused by planetary perturbations and tidal effects on its dense atmosphere, a change that would have occurred over the course of billions of years. The rotation period of Venus may represent an equilibrium state between tidal locking to the Sun's gravitation, which tends to slow rotation, and an atmospheric tide created by solar heating of the thick Venusian atmosphere.[94][95] The 584-day average interval between successive close approaches to Earth is almost exactly equal to 5 Venusian solar days,[96] but the hypothesis of a spin–orbit resonance with Earth has been discounted.[97]

Venus has no natural satellites.[98] It has several co-orbital asteroids: the quasi-satellite 2002 VE68[99][100] and two other temporary co-orbitals, 2001 CK32 and 2012 XE133.[101] In the 17th century, Giovanni Cassini reported a moon orbiting Venus, which was named Neith and numerous sightings were reported over the following 200 years, but most were determined to be stars in the vicinity. Alex Alemi's and David Stevenson's 2006 study of models of the early Solar System at the California Institute of Technology shows Venus likely had at least one moon created by a huge impact event billions of years ago.[102] About 10 million years later, according to the study, another impact reversed the planet's spin direction and caused the Venusian moon gradually to spiral inward until it collided with Venus.[103] If later impacts created moons, these were removed in the same way. An alternative explanation for the lack of satellites is the effect of strong solar tides, which can destabilize large satellites orbiting the inner terrestrial planets.[98]


A photograph of the night sky taken from the seashore. A glimmer of sunlight is on the horizon. There are many stars visible. Venus is at the center, much brighter than any of the stars, and its light can be seen reflected in the ocean.
Venus is always brighter than all other planets or stars as seen from Earth. The second brightest object on the image is Jupiter.
diagram illustrating the phases of Venus, going from full to new, showing that its diameter increases as its visible area decreases
The phases of Venus and evolution of its apparent diameter

Venus is always brighter than any star (apart from the Sun). The greatest luminosity, apparent magnitude −4.9,[12] occurs during crescent phase when it is near Earth. Venus fades to about magnitude −3 when it is backlit by the Sun.[11] The planet is bright enough to be seen in a mid-day clear sky,[104] and it can be easy to see when the Sun is low on the horizon. As an inferior planet, it always lies within about 47° of the Sun.[13]

Venus "overtakes" Earth every 584 days as it orbits the Sun.[2] As it does so, it changes from the "Evening Star", visible after sunset, to the "Morning Star", visible before sunrise. Although Mercury, the other inferior planet, reaches a maximum elongation of only 28° and is often difficult to discern in twilight, Venus is hard to miss when it is at its brightest. Its greater maximum elongation means it is visible in dark skies long after sunset. As the brightest point-like object in the sky, Venus is a commonly misreported "unidentified flying object". U.S. President Jimmy Carter reported having seen a UFO in 1969, which later analysis suggested was probably Venus.

As it moves around its orbit, Venus displays phases like those of the Moon in a telescopic view. The planet presents a small "full" image when it is on the opposite side of the Sun. It shows a larger "quarter phase" when it is at its maximum elongations from the Sun, and is at its brightest in the night sky, and presents a much larger "thin crescent" in telescopic views as it comes around to the near side between Earth and the Sun. Venus is at its largest and presents its "new phase" when it is between Earth and the Sun. Its atmosphere can be seen in a telescope by the halo of light refracted around it.[13]


Venus appears as a black bubble on the edge of the Sun's disk, dimmed through filters to a dull orange.
2004 transit of Venus

Main articles: Transits of Venus and Transit of Venus, 2012

The Venusian orbit is slightly inclined relative to Earth's orbit; thus, when the planet passes between Earth and the Sun, it usually does not cross the face of the Sun. Transits of Venus occur when the planet's inferior conjunction coincides with its presence in the plane of Earth's orbit. Transits of Venus occur in cycles of 243 years with the current pattern of transits being pairs of transits separated by eight years, at intervals of about 105.5 years or 121.5 years—a pattern first discovered in 1639 by the English astronomer Jeremiah Horrocks.[105]

The latest pair was June 8, 2004 and June 5–6, 2012. The transit could be watched live from many online outlets or observed locally with the right equipment and conditions.[106]

The preceding pair of transits occurred in December 1874 and December 1882; the following pair will occur in December 2117 and December 2125.[107] Historically, transits of Venus were important, because they allowed astronomers to determine the size of the astronomical unit, and hence the size of the Solar System as shown by Horrocks in 1639.[108] Captain Cook's exploration of the east coast of Australia came after he had sailed to Tahiti in 1768 to observe a transit of Venus.[109][110]

Pentagram of Venus

the image resembles a complex, spirograph floral pattern with five loops encircling the middle
The pentagram of Venus. Earth is positioned at the center of the diagram, and the curve represents the direction and distance of Venus as a function of time.

The pentagram of Venus is the path that Venus makes as observed from Earth. Successive inferior conjunctions of Venus repeat very near a 13:8 orbital resonance (Earth orbits 8 times for every 13 orbits of Venus), shifting 144° upon sequential inferior conjunctions. The resonance 13:8 ratio is approximate. 8/13 is approximately 0.615385 while Venus orbits the Sun in 0.615187 years.[111]

Ashen light

A long-standing mystery of Venus observations is the so-called ashen light—an apparent weak illumination of its dark side, seen when the planet is in the crescent phase. The first claimed observation of ashen light was made in 1643, but the existence of the illumination has never been reliably confirmed. Observers have speculated it may result from electrical activity in the Venusian atmosphere, but it could be illusory, resulting from the physiological effect of observing a bright, crescent-shaped object.[112]


Early studies

a hand-drawn sequence of images showing Venus passing over the edge of the Sun's disk, leaving an illusroy drop of shadow behind
The "black drop effect" as recorded during the 1769 transit

Venus was known to ancient civilizations both as the "morning star" and as the "evening star", names that reflect the early assumption that these were two separate objects. The Venus tablet of Ammisaduqa, believed to have been compiled around the mid-seventeenth century BCE,[113] shows the Babylonians understood the two were a single object, referred to in the tablet as the "bright queen of the sky", and could support this view with detailed observations.[114] The Ancient Greeks thought of the two as separate stars, Phosphorus and Hesperus. Pliny the Elder credited the realization that they were a single object to Pythagoras in the sixth century BCE,[115] while Diogenes Laertius argued that Parmenides was probably responsible.[116] The Romans designated the morning aspect of Venus as Lucifer, literally "Light-Bringer", and the evening aspect as Vesper, both literal translations of the respective Greek names.

The transit of Venus was first observed in 1032 by the Persian astronomer Avicenna, who concluded Venus is closer to Earth than the Sun,[117] and established Venus was, at least sometimes, below the Sun.[118] In the 12th century, the Andalusian astronomer Ibn Bajjah observed "two planets as black spots on the face of the Sun", which were later identified as the transits of Venus and Mercury by the Maragha astronomer Qotb al-Din Shirazi in the 13th century.[119]

Venus is shown in various positions in its orbit round the Sun, with each position marking a different amount of surface illumination
Galileo's discovery that Venus showed phases (although remaining near the Sun in Earth's sky) proved that it orbits the Sun and not Earth

When the Italian physicist Galileo Galilei first observed the planet in the early 17th century, he found it showed phases like the Moon, varying from crescent to gibbous to full and vice versa. When Venus is furthest from the Sun in the sky, it shows a half-lit phase, and when it is closest to the Sun in the sky, it shows as a crescent or full phase. This could be possible only if Venus orbited the Sun, and this was among the first observations to clearly contradict the Ptolemaic geocentric model that the Solar System was concentric and centered on Earth.[120][121]

The 1639 transit of Venus was accurately predicted by Jeremiah Horrocks and observed by him and his friend, William Crabtree, at each of their respective homes, on 4 December 1639 (24 November under the Julian calendar in use at that time).[122]

The atmosphere of Venus was discovered in 1761 by Russian polymath Mikhail Lomonosov.[123][124] Venus's atmosphere was observed in 1790 by German astronomer Johann Schröter. Schröter found when the planet was a thin crescent, the cusps extended through more than 180°. He correctly surmised this was due to scattering of sunlight in a dense atmosphere. Later, American astronomer Chester Smith Lyman observed a complete ring around the dark side of the planet when it was at inferior conjunction, providing further evidence for an atmosphere.[125] The atmosphere complicated efforts to determine a rotation period for the planet, and observers such as Italian-born astronomer Giovanni Cassini and Schröter incorrectly estimated periods of about 24 h from the motions of markings on the planet's apparent surface.[126]

Ground-based research

black and white image of Venus, its edges blurred by its atmosphere, a small crescent of its surface illuminated
Modern telescopic view of Venus from Earth's surface

Little more was discovered about Venus until the 20th century. Its almost featureless disc gave no hint what its surface might be like, and it was only with the development of spectroscopic, radar and ultraviolet observations that more of its secrets were revealed. The first UV observations were carried out in the 1920s, when Frank E. Ross found that UV photographs revealed considerable detail that was absent in visible and infrared radiation. He suggested this was due to a dense, yellow lower atmosphere with high cirrus clouds above it.[127]

Spectroscopic observations in the 1900s gave the first clues about the Venusian rotation. Vesto Slipher tried to measure the Doppler shift of light from Venus, but found he could not detect any rotation. He surmised the planet must have a much longer rotation period than had previously been thought.[128] Later work in the 1950s showed the rotation was retrograde. Radar observations of Venus were first carried out in the 1960s, and provided the first measurements of the rotation period, which were close to the modern value.[129]

Radar observations in the 1970s revealed details of the Venusian surface for the first time. Pulses of radio waves were beamed at the planet using the 300 m (980 ft) radio telescope at Arecibo Observatory, and the echoes revealed two highly reflective regions, designated the Alpha and Beta regions. The observations also revealed a bright region attributed to mountains, which was called Maxwell Montes.[130] These three features are now the only ones on Venus that do not have female names.[131]


Main article: Observations and explorations of Venus

Early efforts

a skeletal, bottle-shaped craft with a large radio dish on top is seen against a background of stars
Mariner 2, launched in 1962

The first robotic space probe mission to Venus, and the first to any planet, began on 12 February 1961, with the launch of the Venera 1 probe. The first craft of the otherwise highly successful Soviet Venera program, Venera 1 was launched on a direct impact trajectory, but contact was lost seven days into the mission, when the probe was about 2 million km from Earth. It was estimated to have passed within 100,000 km (62,000 mi) of Venus in mid-May.[132]

The United States' exploration of Venus also started badly with the loss of the Mariner 1 probe on launch. The subsequent Mariner 2 mission, after a 109-day transfer orbit on 14 December 1962, became the world's first successful interplanetary mission, passing 34,833 km (21,644 mi) above the surface of Venus. Its microwave and infrared radiometers revealed that although the Venusian cloud tops were cool, the surface was extremely hot—at least 425 °C (797 °F)—confirming previous Earth-based measurements[133] and finally ending any hopes that the planet might harbour ground-based life. Mariner 2 also obtained improved estimates of Venus's mass and of the astronomical unit, but was unable to detect either a magnetic field or radiation belts.[134]

Atmospheric entry

early color photograph of men in white coats walking around what appears to be a series of metal nose cones
Pioneer Venus Multiprobe

The Soviet Venera 3 probe crash-landed on Venus on 1 March 1966. It was the first man-made object to enter the atmosphere and strike the surface of another planet. Its communication system failed before it was able to return any planetary data.[135] On 18 October 1967, Venera 4 successfully entered the atmosphere and deployed science experiments. Venera 4 showed the surface temperature was even hotter than Mariner 2 had measured, at almost 500 °C, and the atmosphere was 90 to 95% carbon dioxide. The Venusian atmosphere was considerably denser than Venera 4's designers had anticipated, and its slower than intended parachute descent meant its batteries ran down before the probe reached the surface. After returning descent data for 93 minutes, Venera 4's last pressure reading was 18 bar at an altitude of 24.96 km.[135]

One day later on 19 October 1967, Mariner 5 conducted a fly-by at a distance of less than 4000 km above the cloud tops. Mariner 5 was originally built as a backup for the Mars-bound Mariner 4; when that mission was successful, the probe was refitted for a Venus mission. A suite of instruments more sensitive than those on Mariner 2, in particular its radio occultation experiment, returned data on the composition, pressure and density of the Venusian atmosphere.[136] The joint Venera 4 – Mariner 5 data was analysed by a combined Soviet-American science team in a series of colloquia over the following year,[137] in an early example of space cooperation.[138]

Armed with the lessons and data learned from Venera 4, the Soviet Union launched the twin probes Venera 5 and Venera 6 five days apart in January 1969; they encountered Venus a day apart on 16 and 17 May. The probes were strengthened to improve their crush depth to 25 bar and were equipped with smaller parachutes to achieve a faster descent. Because then-current atmospheric models of Venus suggested a surface pressure of between 75 and 100 bar, neither was expected to survive to the surface. After returning atmospheric data for a little over 50 minutes, they were both crushed at altitudes of approximately 20 km before going on to strike the surface on the night side of Venus.[135]

Surface and atmospheric science

Venera 7 represented an effort to return data from the planet's surface, and was constructed with a reinforced descent module capable of withstanding a pressure of 180 bar. The module was precooled before entry and equipped with a specially reefed parachute for a rapid 35-minute descent. While entering the atmosphere on 15 December 1970, the parachute is thought to have partially torn, and the probe struck the surface with a hard, yet not fatal, impact. Probably tilted onto its side, it returned a weak signal, supplying temperature data for 23 minutes, the first telemetry received from the surface of another planet.[135]

black and white image of barren, black, slate-like rocks against a flat sky. The ground and the probe are the focus. Several lines are missing due to transmission failure
180-degree panorama of the Venusian surface from the Soviet Venera 9 lander

The above file's purpose is being discussed and/or is being considered for deletion. See files for discussion to help reach a consensus on what to do.

The Venera program continued with Venera 8 sending data from the surface for 50 minutes, after entering the atmosphere on 22 July 1972. Venera 9, which entered the atmosphere of Venus on 22 October 1975, and Venera 10, which entered the atmosphere three days later, sent images of the Venusian landscape—the first images any lander had ever sent from the surface of another planet. The two landing sites presented different terrains in the immediate vicinities of the landers: Venera 9 had landed on a 20-degree slope scattered with boulders around 30–40 cm across; Venera 10 showed basalt-like rock slabs interspersed with weathered material.[139]

A stubby barrel-shaped spacecraft in orbit above Venus. A small dish antenna is at the centre of one of its end faces
The Pioneer Venus orbiter

In the meantime, the United States had sent the Mariner 10 probe on a gravitational slingshot trajectory past Venus on its way to Mercury. On 5 February 1974, Mariner 10 passed within 5790 km of Venus, returning over 4000 photographs as it did so. The images, the best then achieved, showed the planet to be almost featureless in visible light, but ultraviolet light revealed details in the clouds that had never been seen in Earth-bound observations.[140]

The American Pioneer Venus project consisted of two separate missions.[141] The Pioneer Venus Orbiter was inserted into an elliptical orbit around Venus on 4 December 1978, and remained there for over 13 years, studying the atmosphere and mapping the surface with radar. The Pioneer Venus Multiprobe released a total of four probes, which entered the atmosphere on 9 December 1978, returning data on its composition, winds and heat fluxes.[142]

equal area projection of Venus's surface shown in false rainbow color, with reds and yellows representing high altitudes and greens and blues representing low altitudes. Higher altitudes tend to cluster near the equator and the poles.
Position of Venera landing sites returning images form the surface

Four more Venera lander missions took place over the next four years, with Venera 11 and Venera 12 detecting Venusian electrical storms;[143] and Venera 13 and Venera 14, landing on 1 and 5 March 1982, returning the first colour photographs of the surface. All four missions deployed parachutes for braking in the upper atmosphere, then released them at altitudes of 50 km, the dense lower atmosphere providing enough friction to allow for unaided soft landings. Both Venera 13 and 14 analysed soil samples with an on-board X-ray fluorescence spectrometer, and attempted to measure the compressibility of the soil with an impact probe.[143] Venera 14 struck its own ejected camera lens cap and its probe failed to contact the soil.[143] The Venera program came to a close in October 1983, when Venera 15 and Venera 16 were placed in orbit to conduct mapping of the Venusian terrain with synthetic aperture radar.[144]

In 1985, the Soviet Union took advantage of the opportunity to combine missions to Venus and Comet Halley, which passed through the inner Solar System that year. En route to Halley, on 11 and 15 June 1985, the two spacecraft of the Vega program each dropped a Venera-style probe (of which Vega 1's partially failed) and released a balloon-supported aerobot into the upper atmosphere. The balloons achieved an equilibrium altitude of around 53 km, where pressure and temperature are comparable to those at Earth's surface. They remained operational for around 46 hours, and discovered the Venusian atmosphere was more turbulent than previously estimated, and subject to high winds and powerful convection cells.[145][146]

Radar mapping

five circular maps of Venus, showing the surface from slightly different angles. Venus is seen without its atmosphere, in false red and gold color. Physical features are just discernible.
Five global views of Venus by Magellan.

Early Earth-based radar provided a basic idea of the surface. The Pioneer Venus and the Veneras provided improved resolution.

The United States' Magellan spacecraft was launched on 4 May 1989, with a mission to map the surface of Venus with radar.[30] The high-resolution images it obtained during its 4+12 years of operation far surpassed all prior maps and were comparable to visible-light photographs of other planets. Magellan imaged over 98% of the Venusian surface by radar,[147] and mapped 95% of its gravity field. In 1994, at the end of its mission, Magellan was sent to its destruction into the atmosphere of Venus to quantify its density.[148] Venus was observed by the Galileo and Cassini spacecraft during fly-bys on their respective missions to the outer planets, but Magellan was the last dedicated mission to Venus for over a decade.[149][150]

Recent and current missions

a sequence of six black and white images showing a Venus crescent gradually increasing in size as it nears
MESENGER images Venus as it departs from its flyby

On its way to Saturn, Cassini–Huygens made two flybys of Venus for gravity assists, one in 1998 and another in 1999.[151]

NASA's MESSENGER spacecraft made two flybys of Venus in October 2006 and June 2007, to slow its trajectory for an eventual orbital insertion of Mercury in March 2011. It collected scientific data on Venus during both fly-bys.[152]

Venus Express was designed and built by the European Space Agency. Launched on 9 November 2005 by a Russian Soyuz-Fregat rocket procured through Starsem, it successfully assumed a polar orbit around Venus on 11 April 2006.[153] The probe undertook a detailed study of the Venusian atmosphere and clouds, including mapping of the planet's plasma environment and surface characteristics, particularly temperatures. One of the first results from Venus Express was the discovery that a huge double atmospheric vortex exists at the southern pole.[153] Venus Express concluded its active mission in December 2014.

The Japan Aerospace Exploration Agency (JAXA) devised a Venus orbiter, Akatsuki (formerly "Planet-C"), which was launched on 20 May 2010.[154] Planned investigations include surface imaging with an infrared camera and experiments designed to confirm the presence of lightning, as well as the determination of the existence of current surface volcanism.[155] The craft failed to enter orbit in December 2010 due to a malfunction in its main engine. Controllers placed the spacecraft on a trajectory that would return it to Venus in December 2015.[154] Akatsuki successfully entered orbit around Venus on 7 December 2015 using its attitude control thrusters.[156]

In late 2013 the Venus Spectral Rocket Experiment (VeSpR) took place, which launched a sub-orbital space telescope.

Planned and proposed missions

a spindly four-wheeled robot moves across Venus's dark surface, against its yellow sky
Artist's impression of a Stirling cooled Venus Rover.[157]
The probe is visible in orbit above the clouds of Venus
Veritas orbiter, depicted here would create a radar map at higher resolution than Magellan, and also observe the surface at the wavelengths that can see through the clouds

The European Space Agency (ESA) plans to launch a mission to Mercury in January 2017 called BepiColombo, which will perform two fly-bys of Venus before it reaches Mercury orbit in 2020.[158][159]

NASA will launch the Solar Probe Plus in 2018, which will perform seven Venus fly-bys during its six-year, 24-orbit reconnaissance of the Sun.[160]

Under its New Frontiers program, NASA has proposed a lander mission called the Venus In-Situ Explorer to land on Venus to study surface conditions and investigate the elemental and mineralogical features of the regolith. The probe would be equipped with a core sampler to drill into the surface and study pristine rock samples not weathered by the harsh surface conditions. A Venus atmospheric and surface probe mission, "Surface and Atmosphere Geochemical Explorer" (SAGE), was proposed by NASA as a candidate mission study in the 2009 New Frontiers selection,[161] but the mission was not selected for flight.

The Venera-D (Russian: Венера-Д) probe is a proposed Russian space probe to Venus, to be launched around 2024,[162] to make remote-sensing observations around the planet and deploying a lander, based on the Venera design, capable of surviving for a long duration on the surface. Other proposed Venus exploration concepts include rovers, balloons, and aeroplanes.[163]

A Venus aircraft called VAMP (Venus Atmospheric Maneuverable Platform) would be an inflatable propeller powered aircraft that might be proposed for the U.S. New Frontiers program.[164]

In 2015 the Russian Space Research Institute said the that the U.S. and Russia were considering a joint mission to Venus in the 2020s.[165]

Two possible future U.S. missions under consideration are DAVINCI and VERITAS as part of the 2015 Discovery Program selection.

Manned fly-by concept

Main article: Manned Venus Flyby

A manned Venus fly-by mission, using Apollo program hardware, was proposed in the late 1960s.[166] The mission was planned to launch in late October or early November 1973, and would have used a Saturn V to send three men to fly past Venus in a flight lasting approximately one year. The spacecraft would have passed approximately 5,000 km (3,100 mi) from the surface of Venus about four months later.[166]

Venus flybys have also been proposed as part of trajectories designed for manned missions to Mars. The Soviet TMK-Mavr concept was one such proposal, and similar concepts were studied by NASA and its contractors in the 1960s.[167][168] Inspiration Mars, a private nonprofit which aims to conduct a manned Mars flyby, includes a manned Venus flyby in the 2021 variant of their mission.[169]

Sample return

Various concepts for a Venus sample return include a high-speed upper atmosphere collection, an atmosphere sample return by slowing down and entering then returning, and a surface sample return.[170]

Spacecraft timeline

This is a list of attempted and successful spacecraft that have left Earth to explore Venus more closely.[171] Venus has also been imaged by the Hubble Space Telescope in Earth orbit, and distant telescopic observations are another source of information about Venus.

Timeline by NASA Goddard Space Flight Center (up to 2011)[171]
Responsible Mission Launch Elements and result Notes
USSR Soviet Union Sputnik 7 4 February 1961 Impact (attempted)
USSR Soviet Union Venera 1 12 February 1961 Flyby (contact lost)
USA United States Mariner 1 22 July 1962 Flyby (launch failure)
USSR Soviet Union Sputnik 19 25 August 1962 Flyby (attempted)
USA United States Mariner 2 27 August 1962 Flyby First successful planetary flyby[172]
USSR Soviet Union Sputnik 20 1 September 1962 Flyby (attempted)
USSR Soviet Union Sputnik 21 12 September 1962 Flyby (attempted)
USSR Soviet Union Cosmos 21 11 November 1963 Attempted Venera test flight?
USSR Soviet Union Venera 1964A 19 February 1964 Flyby (launch failure)
USSR Soviet Union Venera 1964B 1 March 1964 Flyby (launch failure)
USSR Soviet Union Cosmos 27 27 March 1964 Flyby (attempted)
USSR Soviet Union Zond 1 2 April 1964 Flyby (contact lost)
USSR Soviet Union Venera 2 12 November 1965 Flyby (contact lost)
USSR Soviet Union Venera 3 16 November 1965 Atmospheric probe (contact lost)
USSR Soviet Union Cosmos 96 23 November 1965 Lander (attempted?)
USSR Soviet Union Venera 1965A 23 November 1965 Flyby (launch failure)
USSR Soviet Union Venera 4 12 June 1967 Atmospheric probe
USA United States Mariner 5 14 June 1967 Flyby
USSR Soviet Union Cosmos 167 17 June 1967 Probe (attempted)
USSR Soviet Union Venera 5 5 January 1969 Atmospheric probe
USSR Soviet Union Venera 6 10 January 1969 Atmospheric probe
USSR Soviet Union Venera 7 17 August 1970 Lander First ever successful landing on another planet; transmitted from surface for 23 minutes
USSR Soviet Union Cosmos 359 22 August 1970 Probe (attempted)
USSR Soviet Union Venera 8 27 March 1972 Lander
USSR Soviet Union Cosmos 482 31 March 1972 Probe (attempted)
USA United States Mariner 10 4 November 1973 Flyby Mercury flyby
USSR Soviet Union Venera 9 8 June 1975 Orbiter and lander First ever photograph of the surface of another planet
USSR Soviet Union Venera 10 14 June 1975 Orbiter and lander
USA United States Pioneer Venus 1 20 May 1978 Orbiter
USA United States Pioneer Venus 2 8 August 1978 Atmospheric probes
USSR Soviet Union Venera 11 9 September 1978 Flyby bus and lander
USSR Soviet Union Venera 12 14 September 1978 Flyby bus and lander
USSR Soviet Union Venera 13 30 October 1981 Flyby bus and lander First ever color photograph of the surface of another planet
USSR Soviet Union Venera 14 4 November 1981 Flyby bus and lander
USSR Soviet Union Venera 15 2 June 1983 Orbiter
USSR Soviet Union Venera 16 7 June 1983 Orbiter
USSR Soviet Union Vega 1 15 December 1984 Lander and balloon Comet Halley flyby
USSR Soviet Union Vega 2 21 December 1984 Lander and balloon Comet Halley flyby
USA United States Magellan 4 May 1989 Orbiter
USA United States Galileo 18 October 1989 Flyby Jupiter orbiter/probe
USA United States Cassini 15 October 1997 Flyby (x2) In 1998 and 1999; Saturn orbiter[151]
USA United States MESSENGER 3 August 2004 Flyby (x2) Mercury orbiter
ESA Europe Venus Express 9 November 2005 Orbiter
JPN Japan Akatsuki 7 December 2010 Orbiter Successful orbit insertion reattempt on 7 December 2015
ESA Europe
JPN Japan
BepiColombo January 2017
Two flybys planned Planned Mercury orbiter
RUS Russia Venera-D 2020s Orbiter and lander Proposed mission[173]

In culture

See also Venus (mythology), Venus (astrology) and Historical observations and impact

Throughout history and cultures, the planet has been of remarkable importance as an especial object of observation, reflection and projection. Popular beliefs and observations resulted in different and in parts similar patterns in mythology as well as phenomenological descriptions, attributions and depictions, e.g. in astrology. Such developments in manifestations of human thought reflect the planet's image as a result of early observations of Venus and their impact on culture and science.


The adjective Venusian is commonly used for items related to Venus, though the Latin adjective is the rarely used Venerean; the archaic Cytherean is still occasionally encountered. Venus is the only planet in the Solar System that is named after a female figure.[n 2] (Three dwarf planetsCeres, Eris and Haumea—along with many of the first discovered asteroids[174] and some moons (such as the Galilean moons) also have feminine names. Earth and the Moon also have feminine names in many languages—Gaia/Terra, Selene/Luna—but the female mythological figures who personified them were named after them, not the other way around.)[175]

Venus symbol

Main article: Venus symbol


The astronomical symbol for Venus is the same as that used in biology for the female sex: a circle with a small cross beneath.[176] The Venus symbol also represents femininity, and in Western alchemy stood for the metal copper.[176] Polished copper has been used for mirrors from antiquity, and the symbol for Venus has sometimes been understood to stand for the mirror of the goddess.[176]

Colonization and terraforming

Main articles: Colonization of Venus and Terraforming of Venus

See also: Life on Venus

Due to its extremely hostile conditions, a surface colony on Venus is not possible with current technology. The atmospheric pressure and temperature approximately fifty kilometres above the surface are similar to those at Earth's surface. In Venus's mostly carbon dioxide atmosphere, Earth's air (nitrogen and oxygen) would act as a lifting gas. This has led to proposals for "floating cities" in the Venusian atmosphere.[177] Aerostats (lighter-than-air balloons) could be used for initial exploration and ultimately for permanent settlements.[177] Among the many engineering challenges are the dangerous amounts of sulfuric acid at these heights.[177]

Venus is shown in black and white, with subtle cloud formations visible
Venus at a wavelength of 630 nm
a half Venus is shown, tinted red and purple
Ultraviolet view of Venus by the Hubble telescope, in false colour
a half-Venus is shown with heavy pixellation
X-ray image of Venus by Chandra (AXAF)
The image resembles Earth, though with far more regular cloud patterns and different continental outlines
Artist's conception of a terraformed Venus

See also

Template:Wikipedia books


  1. ^ Misstated as "Ganiki Chasma" in the press release and scientific publication.[44]
  2. ^ Goddesses such as Gaia and Terra were named after Earth, and not vice versa.


  1. ^ Lakdawalla, Emily (21 September 2009). "Venus Looks More Boring Than You Think It Does". The Planetary Society. Retrieved 4 December 2011.
  2. ^ a b c d e f g h i j k l Williams, David R. (15 April 2005). "Venus Fact Sheet". NASA. Retrieved 12 October 2007.
  3. ^ Yeomans, Donald K. "HORIZONS Web-Interface for Venus (Major Body=2)". JPL Horizons On-Line Ephemeris System.—Select "Ephemeris Type: Orbital Elements", "Time Span: 2000-01-01 12:00 to 2000-01-02". ("Target Body: Venus" and "Center: Sun" should be defaulted to.) Results are instantaneous osculating values at the precise J2000 epoch.
  4. ^ a b Simon, J.L.; Bretagnon, P.; Chapront, J.; Chapront-Touzé, M.; Francou, G.; Laskar, J. (February 1994). "Numerical expressions for precession formulae and mean elements for the Moon and planets". Astronomy and Astrophysics. 282 (2): 663–683. Bibcode:1994A&A...282..663S.
  5. ^ "The MeanPlane (Invariable plane) of the Solar System passing through the barycenter". 3 April 2009. Retrieved 10 April 2009. (produced with Solex 10 written by Aldo Vitagliano; see also Invariable plane)
  6. ^ a b Seidelmann, P. Kenneth; Archinal, Brent A.; A'Hearn, Michael F.; et al. (2007). "Report of the IAU/IAG Working Group on cartographic coordinates and rotational elements: 2006". Celestial Mechanics and Dynamical Astronomy. 98 (3): 155–180. Bibcode:2007CeMDA..98..155S. doi:10.1007/s10569-007-9072-y.
  7. ^ Konopliv, A. S.; Banerdt, W. B.; Sjogren, W. L. (May 1999). "Venus Gravity: 180th Degree and Order Model". Icarus. 139 (1): 3–18. Bibcode:1999Icar..139....3K. doi:10.1006/icar.1999.6086.
  8. ^ "Planets and Pluto: Physical Characteristics". NASA. 5 November 2008. Retrieved 26 August 2015.
  9. ^ "Report on the IAU/IAG Working Group on cartographic coordinates and rotational elements of the planets and satellites". International Astronomical Union. 2000. Retrieved 12 April 2007.
  10. ^ a b Mallama, A.; Wang, D.; Howard, R.A. (2006). "Venus phase function and forward scattering from H2SO4". Icarus. 182 (1): 10–22. Bibcode:2006Icar..182...10M. doi:10.1016/j.icarus.2005.12.014.
  11. ^ a b Mallama, A. (2011). "Planetary magnitudes". Sky and Telescope. 121 (1): 51–56.
  12. ^ a b "HORIZONS Web-Interface for Venus (Major Body=299)" (Geophysical data). JPL Horizons On-Line Ephemeris System. 27 February 2006. Retrieved 28 November 2010. (Using JPL Horizons you can see that on 2013-Dec-08 Venus will have an apmag of −4.89)
  13. ^ a b c Espenak, Fred (1996). "Venus: Twelve year planetary ephemeris, 1995–2006". NASA Reference Publication 1349. NASA/Goddard Space Flight Center. Retrieved 20 June 2006.
  14. ^ a b "Venus: Facts & Figures". NASA. Retrieved 12 April 2007.
  15. ^ Lawrence, Pete (2005). "The Shadow of Venus". Retrieved 13 June 2012.
  16. ^ Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.; Gilmore, M. S.; Kamp, L. W.; Carlson, R. W.; Baines, K. H. (2008). "Felsic highland crust on Venus suggested by Galileo Near-Infrared Mapping Spectrometer data". Journal of Geophysical Research, Planets. 113: E00B24. Bibcode:2008JGRE..11300B24H. doi:10.1029/2008JE003134.
  17. ^ David Shiga Did Venus's ancient oceans incubate life?, New Scientist, 10 October 2007
  18. ^ B.M. Jakosky, "Atmospheres of the Terrestrial Planets", in Beatty, Petersen and Chaikin (eds,), The New Solar System, 4th edition 1999, Sky Publishing Company (Boston) and Cambridge University Press (Cambridge), pp. 175–200
  19. ^ "Caught in the wind from the Sun". ESA (Venus Express). 28 November 2007. Retrieved 12 July 2008.
  20. ^ Lopes, Rosaly M. C.; Gregg, Tracy K. P. (2004). Volcanic worlds: exploring the Solar System's volcanoes. Springer Publishing. p. 61. ISBN 3-540-00431-9.
  21. ^ "Atmosphere of Venus". The Encyclopedia of Astrobiology, Astronomy, and Spaceflght. Retrieved 29 April 2007.
  22. ^ Esposito, Larry W. (9 March 1984). "Sulfur Dioxide: Episodic Injection Shows Evidence for Active Venus Volcanism". Science. 223 (4640): 1072–1074. Bibcode:1984Sci...223.1072E. doi:10.1126/science.223.4640.1072. PMID 17830154. Retrieved 29 April 2009.
  23. ^ Bullock, Mark A.; Grinspoon, David H. (March 2001). "The Recent Evolution of Climate on Venus". Icarus. 150 (1): 19–37. Bibcode:2001Icar..150...19B. doi:10.1006/icar.2000.6570.
  24. ^ Basilevsky, Alexander T.; Head, James W., III (1995). "Global stratigraphy of Venus: Analysis of a random sample of thirty-six test areas". Earth, Moon, and Planets. 66 (3): 285–336. Bibcode:1995EM&P...66..285B. doi:10.1007/BF00579467.((cite journal)): CS1 maint: multiple names: authors list (link)
  25. ^ Kaufmann, W. J. (1994). Universe. New York: W. H. Freeman. p. 204. ISBN 0-7167-2379-4.
  26. ^ a b c d Nimmo, F.; McKenzie, D. (1998). "Volcanism and Tectonics on Venus". Annual Review of Earth and Planetary Sciences. 26 (1): 23–53. Bibcode:1998AREPS..26...23N. doi:10.1146/
  27. ^ a b Strom, R. G.; Schaber, G. G.; Dawsow, D. D. (1994). "The global resurfacing of Venus". Journal of Geophysical Research. 99 (E5): 10899–10926. Bibcode:1994JGR....9910899S. doi:10.1029/94JE00388.
  28. ^ a b c d Frankel, Charles (1996). Volcanoes of the Solar System. Cambridge University Press. ISBN 0-521-47770-0.
  29. ^ Batson, R.M.; Russell J. F. (18–22 March 1991). "Naming the Newly Found Landforms on Venus" (PDF). Proceedings of the Lunar and Planetary Science Conference XXII. Houston, Texas. p. 65. Retrieved 12 July 2009. ((cite conference)): Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  30. ^ a b Young, C., ed. (August 1990). The Magellan Venus Explorer's Guide (JPL Publication 90-24 ed.). California: Jet Propulsion Laboratory.
  31. ^ Davies, M. E.; Abalakin, V. K.; Bursa, M.; Lieske, J. H.; Morando, B.; Morrison, D.; Seidelmann, P. K.; Sinclair, A. T.; Yallop, B.; Tjuflin, Y. S. (1994). "Report of the IAU Working Group on Cartographic Coordinates and Rotational Elements of the Planets and Satellites". Celestial Mechanics and Dynamical Astronomy. 63 (2): 127–148. Bibcode:1996CeMDA..63..127D. doi:10.1007/BF00693410.
  32. ^ "USGS Astrogeology: Rotation and pole position for the Sun and planets (IAU WGCCRE)". US Geological Survey. Retrieved 22 October 2009.
  33. ^ "The Magellan Venus Explorer's Guide". Jet Propulsion Laboratory. Retrieved 22 October 2009.
  34. ^ Karttunen, Hannu; Kroger, P.; Oja, H.; Poutanen, M.; Donner, K. J. (2007). Fundamental Astronomy. Springer. p. 162. ISBN 3-540-34143-9.
  35. ^ Russell, C. T.; Phillips, J. L. (1990). "The Ashen Light". Advances in Space Research. 10 (5): 137–141. Bibcode:1990AdSpR..10..137R. doi:10.1016/0273-1177(90)90174-X.
  36. ^ Krasnopolskii, V. A. (May 1980). "Lightnings on Venus studied on the basis of Venera 9 and 10 data". Kosmicheskie Issledovaniia. 18: 429–434. Bibcode:1980KosIs..18..429K.
  37. ^ "Venera 12 Descent Craft". National Space Science Data Center. NASA. Retrieved 10 September 2015.
  38. ^ Russell, C. T.; Zhang, T. L.; Delva, M.; Magnes, W.; Strangeway, R. J.; Wei, H. Y. (November 2007). "Lightning on Venus inferred from whistler-mode waves in the ionosphere" (PDF). Nature. 450 (7170): 661–662. Bibcode:2007Natur.450..661R. doi:10.1038/nature05930. PMID 18046401.
  39. ^ "Venus also zapped by lightning". CNN. 29 November 2007. Archived from the original on 30 November 2007. Retrieved 29 November 2007.
  40. ^ Bauer, Markus (3 December 2012). "Have Venusian volcanoes been caught in the act?". European Space Agency. Archived from the original on 3 November 2013. Retrieved 20 June 2015. ((cite web)): Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  41. ^ Glaze, Lori S. (August 1999). "Transport of SO2 by explosive volcanism on Venus". Journal of Geophysical Research. 104 (E8): 18899–18906. Bibcode:1999JGR...10418899G. doi:10.1029/1998JE000619.
  42. ^ Marcq, Emmanuel; Bertaux, Jean-Loup; Montmessin, Franck; Belyaev, Denis (January 2013). "Variations of sulphur dioxide at the cloud top of Venus's dynamic atmosphere". Nature Geoscience. 6 (1): 25–28. Bibcode:2013NatGe...6...25M. doi:10.1038/ngeo1650.
  43. ^ "Ganis Chasma". Gazetteer of Planetary Nomenclature. USGS Astrogeology Science Center. Retrieved 19 June 2015.
  44. ^ a b Lakdawalla, Emily (18 June 2015). "Transient hot spots on Venus: Best evidence yet for active volcanism". Planetary Society. Retrieved 20 June 2015.
  45. ^ "Hot lava flows discovered on Venus". Venus Express. ESA. 18 June 2015. Archived from the original on 19 June 2015. Retrieved 20 June 2015.
  46. ^ Shalygin, E. V.; Markiewicz, W. J.; Basilevsky, A. T.; Titov, D. V.; Ignatiev, N. I.; Head, J. W. (17 June 2015). "Active volcanism on Venus in the Ganiki Chasma rift zone". Geophysical Research Letters. 42: 4762–4769. Bibcode:2015GeoRL..42.4762S. doi:10.1002/2015GL064088.
  47. ^ Romeo, I.; Turcotte, D. L. (2009). "The frequency-area distribution of volcanic units on Venus: Implications for planetary resurfacing". Icarus. 203 (1): 13–19. Bibcode:2009Icar..203...13R. doi:10.1016/j.icarus.2009.03.036.
  48. ^ Herrick, R. R.; Phillips, R. J. (1993). "Effects of the Venusian atmosphere on incoming meteoroids and the impact crater population". Icarus. 112 (1): 253–281. Bibcode:1994Icar..112..253H. doi:10.1006/icar.1994.1180.
  49. ^ David Morrison (2003). The Planetary System. Benjamin Cummings. ISBN 0-8053-8734-X.
  50. ^ Goettel, K. A.; Shields, J. A.; Decker, D. A. (16–20 March 1981). "Density constraints on the composition of Venus". Proceedings of the Lunar and Planetary Science Conference. Houston, TX: Pergamon Press. pp. 1507–1516. Bibcode:1982LPSC...12.1507G. Retrieved 12 July 2009. ((cite conference)): Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  51. ^ Faure, Gunter; Mensing, Teresa M. (2007). Introduction to planetary science: the geological perspective. Springer eBook collection. Springer. p. 201. ISBN 1-4020-5233-2.
  52. ^ Nimmo, F. (2002). "Crustal analysis of Venus from Magellan satellite observations at Atalanta Planitia, Beta Regio, and Thetis Regio". Geology. 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613.
  53. ^ "Venus". Case Western Reserve University. 13 September 2006. Retrieved 21 December 2011.
  54. ^ Lewis, John S. (2004). Physics and Chemistry of the Solar System (2nd ed.). Academic Press. p. 463. ISBN 0-12-446744-X.
  55. ^ Henry Bortman (2004). "Was Venus Alive? 'The Signs are Probably There'". Retrieved 31 July 2010.
  56. ^ Hammonds, Markus (16 May 2013). "Does Alien Life Thrive in Venus's Mysterious Clouds?". Discovery News. Retrieved 11 August 2015.
  57. ^ Grinspoon, David H.; Bullock, M. A. (October 2007). "Searching for Evidence of Past Oceans on Venus". Bulletin of the American Astronomical Society. 39: 540. Bibcode:2007DPS....39.6109G.
  58. ^ Kasting, J. F. (1988). "Runaway and moist greenhouse atmospheres and the evolution of Earth and Venus". Icarus. 74 (3): 472–494. Bibcode:1988Icar...74..472K. doi:10.1016/0019-1035(88)90116-9. PMID 11538226.
  59. ^ Template:Wayback :: Astrobiology Magazine
  60. ^ Geoffrey A. Landis Template:Wayback
  61. ^ Cockell, C. S. (December 1999). "Life on Venus". Planetary and Space Science. 47 (12): 1487–1501. Bibcode:1999P&SS...47.1487C. doi:10.1016/S0032-0633(99)00036-7.
  62. ^ Moshkin, B. E.; Ekonomov, A. P.; Golovin Iu. M. (1979). "Dust on the surface of Venus". Kosmicheskie Issledovaniia (Cosmic Research). 17: 280–285. Bibcode:1979CoRe...17..232M.
  63. ^ Krasnopolsky, V. A.; Parshev, V. A. (1981). "Chemical composition of the atmosphere of Venus". Nature. 292 (5824): 610–613. Bibcode:1981Natur.292..610K. doi:10.1038/292610a0.
  64. ^ Krasnopolsky, Vladimir A. (2006). "Chemical composition of Venus atmosphere and clouds: Some unsolved problems". Planetary and Space Science. 54 (13–14): 1352–1359. Bibcode:2006P&SS...54.1352K. doi:10.1016/j.pss.2006.04.019.
  65. ^ W. B., Rossow; A. D., del Genio; T., Eichler (1990). "Cloud-tracked winds from Pioneer Venus OCPP images" (PDF). Journal of the Atmospheric Sciences. 47 (17): 2053–2084. Bibcode:1990JAtS...47.2053R. doi:10.1175/1520-0469(1990)047<2053:CTWFVO>2.0.CO;2. ISSN 1520-0469.
  66. ^ Normile, Dennis (7 May 2010). "Mission to probe Venus's curious winds and test solar sail for propulsion". Science. 328 (5979): 677. Bibcode:2010Sci...328..677N. doi:10.1126/science.328.5979.677-a. PMID 20448159.
  67. ^ Lorenz, Ralph D.; Lunine, Jonathan I.; Withers, Paul G.; McKay, Christopher P. (2001). "Titan, Mars and Earth: Entropy Production by Latitudinal Heat Transport" (PDF). Ames Research Center, University of Arizona Lunar and Planetary Laboratory. Retrieved 21 August 2007.
  68. ^ "Interplanetary Seasons". NASA. Retrieved 21 August 2007.
  69. ^ Basilevsky A. T.; Head J. W. (2003). "The surface of Venus". Reports on Progress in Physics. 66 (10): 1699–1734. Bibcode:2003RPPh...66.1699B. doi:10.1088/0034-4885/66/10/R04.
  70. ^ McGill G. E.; Stofan E. R.; Smrekar S. E. (2010). "Venus tectonics". In T. R. Watters; R. A. Schultz (eds.). Planetary Tectonics. Cambridge University Press. pp. 81–120. ISBN 978-0-521-76573-2.
  71. ^ Otten, Carolyn Jones (2004). ""Heavy metal" snow on Venus is lead sulfide". Washington University in St Louis. Retrieved 21 August 2007.
  72. ^ a b Russell, S. T.; Zhang, T. L.; Delva, M.; Magnes, W.; Strangeway, R. J.; Wei, H. Y. (2007). "Lightning on Venus inferred from whistler-mode waves in the ionosphere". Nature. 450 (7170): 661–662. Bibcode:2007Natur.450..661R. doi:10.1038/nature05930. PMID 18046401.
  73. ^ Hand, Eric (November 2007). "European mission reports from Venus". Nature (450): 633–660. doi:10.1038/news.2007.297.
  74. ^ Staff (28 November 2007). "Venus offers Earth climate clues". BBC News. Retrieved 29 November 2007.
  75. ^ "ESA finds that Venus has an ozone layer too". ESA. 6 October 2011. Retrieved 25 December 2011.
  76. ^ Staff (29 January 2013). "When A Planet Behaves Like A Comet". ESA. Retrieved 31 January 2013.
  77. ^ Kramer, Miriam (30 January 2013). "Venus Can Have 'Comet-Like' Atmosphere". Retrieved 31 January 2013.
  78. ^ a b "The HITRAN Database". Atomic and Molecular Physics Division, Harvard-Smithsonian Center for Astrophysics. Retrieved 8 August 2012. HITRAN is a compilation of spectroscopic parameters that a variety of computer codes use to predict and simulate the transmission and emission of light in the atmosphere.
  79. ^ a b "Hitran on the Web Information System". Harvard-Smithsonian Center for Astrophysics (CFA), Cambridge, MA, USA; V.E. Zuev Institute of Atmosperic Optics (IAO), Tomsk, Russia. Retrieved 11 August 2012.
  80. ^ Dolginov, Sh.; Eroshenko, E. G.; Lewis, L. (September 1969). "Nature of the Magnetic Field in the Neighborhood of Venus". Cosmic Research. 7: 675. Bibcode:1969CosRe...7..675D.
  81. ^ Kivelson G. M.; Russell, C. T. (1995). "Introduction to Space Physics". Cambridge University Press. ISBN 0-521-45714-9. ((cite journal)): Cite journal requires |journal= (help)
  82. ^ Upadhyay, H. O.; Singh, R. N. (April 1995). "Cosmic ray Ionization of Lower Venus Atmosphere". Advances in Space Research. 15 (4): 99–108. Bibcode:1995AdSpR..15...99U. doi:10.1016/0273-1177(94)00070-H.
  83. ^ Luhmann J. G.; Russell C. T. (1997). J. H. Shirley; R. W. Fainbridge (eds.). Venus: Magnetic Field and Magnetosphere. Chapman and Hall, New York. ISBN 978-1-4020-4520-2. Retrieved 28 June 2009. ((cite book)): |work= ignored (help)
  84. ^ Stevenson, D. J. (15 March 2003). "Planetary magnetic fields". Earth and Planetary Science Letters. 208 (1–2): 1–11. Bibcode:2003E&PSL.208....1S. doi:10.1016/S0012-821X(02)01126-3.
  85. ^ a b Nimmo, Francis (November 2002). "Why does Venus lack a magnetic field?" (PDF). Geology. 30 (11): 987–990. Bibcode:2002Geo....30..987N. doi:10.1130/0091-7613(2002)030<0987:WDVLAM>2.0.CO;2. ISSN 0091-7613. Retrieved 28 June 2009.
  86. ^ Konopliv, A. S.; Yoder, C. F. (1996). "Venusian k2 tidal Love number from Magellan and PVO tracking data". Geophysical Research Letters. 23 (14): 1857–1860. Bibcode:1996GeoRL..23.1857K. doi:10.1029/96GL01589. Retrieved 12 July 2009.
  87. ^ Svedhem, Håkan; Titov, Dmitry V.; Taylor, Fredric W.; Witasse, Olivier (November 2007). "Venus as a more Earth-like planet". Nature. 450 (7170): 629–632. Bibcode:2007Natur.450..629S. doi:10.1038/nature06432. PMID 18046393.
  88. ^ Donahue, T. M.; Hoffman, J. H.; Hodges, R. R.; Watson, A. J. (1982). "Venus Was Wet: A Measurement of the Ratio of Deuterium to Hydrogen". Science. 216 (4546): 630–633. Bibcode:1982Sci...216..630D. doi:10.1126/science.216.4546.630. ISSN 0036-8075.
  89. ^ "Venus Close Approaches to Earth as predicted by Solex 11". Archived from the original on 9 August 2012. Retrieved 19 March 2009. Numbers generated by Solex
  90. ^ Squyres, Steven W. (2016). "Venus". Encyclopædia Britannica Online. Retrieved 7 January 2016.
  91. ^ Bakich, Michael E. (2000). The Cambridge Planetary Handbook. Cambridge University Press. p. 50. ISBN 0-521-63280-3.
  92. ^ "Could Venus Be Shifting Gear?". Venus Express. European Space Agency. 10 February 2012. Retrieved 7 January 2016.
  93. ^ a b "Compare the Planets". Explore. Planetary Society. Retrieved 7 January 2016.
  94. ^ Correia, Alexandre C. M.; Laskar, Jacques; De Surgy, Olivier Néron (May 2003). "Long-Term Evolution of the Spin of Venus, Part I: Theory" (PDF). Icarus. 163 (1): 1–23. Bibcode:2003Icar..163....1C. doi:10.1016/S0019-1035(03)00042-3.
  95. ^ Laskar, Jacques; De Surgy, Olivier Néron. "Long-Term Evolution of the Spin of Venus, Part II: Numerical Simulations" (PDF). Icarus. 163 (1): 24–45. Bibcode:2003Icar..163...24C. doi:10.1016/S0019-1035(03)00043-5.
  96. ^ Gold, T.; Soter, S. (1969). "Atmospheric Tides and the Resonant Rotation of Venus". Icarus. 11 (3): 356–66. Bibcode:1969Icar...11..356G. doi:10.1016/0019-1035(69)90068-2.
  97. ^ Shapiro, I. I.; Campbell, D. B.; De Campli, W. M. (June 1979). "Nonresonance Rotation of Venus". Astrophysical Journal. 230: L123–L126. Bibcode:1979ApJ...230L.123S. doi:10.1086/182975.
  98. ^ a b Sheppard, Scott S.; Trujillo, Chadwick A. (July 2009). "A Survey for Satellites of Venus". Icarus. 202 (1): 12–16. arXiv:0906.2781. Bibcode:2009Icar..202...12S. doi:10.1016/j.icarus.2009.02.008.
  99. ^ Mikkola, S.; Brasser, R.; Wiegert, P.; Innanen, K. (July 2004). "Asteroid 2002 VE68: A Quasi-Satellite of Venus". Monthly Notices of the Royal Astronomical Society. 351 (3): L63. Bibcode:2004MNRAS.351L..63M. doi:10.1111/j.1365-2966.2004.07994.x.
  100. ^ De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl (November 2012). "On the Dynamical Evolution of 2002 VE68". Monthly Notices of the Royal Astronomical Society. 427 (1): 728–39. arXiv:1208.4444. Bibcode:2012MNRAS.427..728D. doi:10.1111/j.1365-2966.2012.21936.x.
  101. ^ De la Fuente Marcos, Carlos; De la Fuente Marcos, Raúl. "Asteroid 2012 XE133: A Transient Companion to Venus". Monthly Notices of the Royal Astronomical Society. 432 (2): 886–93. arXiv:1303.3705. Bibcode:2013MNRAS.432..886D. doi:10.1093/mnras/stt454.
  102. ^ Musser, George (10 October 2006). "Double Impact May Explain Why Venus Has No Moon". Scientific American. Retrieved 7 January 2016.
  103. ^ Tytell, David (10 October 2006). "Why Doesn't Venus Have a Moon?". Sky and Telescope. Retrieved 7 January 2016.
  104. ^ Tony Flanders (25 February 2011). "See Venus in Broad Daylight!". Sky & Telescope. Retrieved 11 January 2016.
  105. ^ Anon. "Transit of Venus". History. University of Central Lancashire. Retrieved 14 May 2012.
  106. ^ Boyle, Alan (5 June 2012). "Venus transit: A last-minute guide". MSNBC. Archived from the original on 18 June 2013. Retrieved 11 January 2016.
  107. ^ Espenak, Fred (2004). "Transits of Venus, Six Millennium Catalog: 2000 BCE to 4000 CE". Transits of the Sun. NASA. Retrieved 14 May 2009.
  108. ^ Kollerstrom, Nicholas (1998). "Horrocks and the Dawn of British Astronomy". University College London. Retrieved 11 May 2012.
  109. ^ Hornsby, T. (1771). "The quantity of the Sun's parallax, as deduced from the observations of the transit of Venus on June 3, 1769". Philosophical Transactions of the Royal Society. 61 (0): 574–579. doi:10.1098/rstl.1771.0054.
  110. ^ Woolley, Richard (1969). "Captain Cook and the Transit of Venus of 1769". Notes and Records of the Royal Society of London. 24 (1): 19–32. doi:10.1098/rsnr.1969.0004. ISSN 0035-9149. JSTOR 530738.
  111. ^ "The Pentagram of Venus". Azimuth.
  112. ^ Baum, R. M. (2000). "The enigmatic ashen light of Venus: an overview". Journal of the British Astronomical Association. 110: 325. Bibcode:2000JBAA..110..325B.
  113. ^ Hobson, Russell (2009). The Exact Transmission of Texts in the First Millennium B.C.E. (PDF) (Ph.D.). University of Sydney, Department of Hebrew, Biblical and Jewish Studies.
  114. ^ Waerden, Bartel (1974). Science awakening II: the birth of astronomy. Springer. p. 56. ISBN 90-01-93103-0. Retrieved 10 January 2011.
  115. ^ Pliny the Elder (1991). Natural History II:36–37. translated by John F. Healy. Harmondsworth, Middlesex, UK: Penguin. pp. 15–16.
  116. ^ Burkert, Walter (1972). Lore and Science in Ancient Pythagoreanism. Harvard University Press. p. 307. ISBN 0-674-53918-4.
  117. ^ Goldstein, Bernard R. (March 1972). "Theory and Observation in Medieval Astronomy". Isis. 63 (1). University of Chicago Press: 39–47 [44]. doi:10.1086/350839.
  118. ^ Sally P. Ragep (2007). "Ibn Sīnā: Abū ʿAlī al‐Ḥusayn ibn ʿAbdallāh ibn Sīnā". In Thomas Hockey (ed.). The Biographical Encyclopedia of Astronomers. Springer Science+Business Media. pp. 570–572.
  119. ^ S. M. Razaullah Ansari (2002). History of oriental astronomy: proceedings of the joint discussion-17 at the 23rd General Assembly of the International Astronomical Union, organised by the Commission 41 (History of Astronomy), held in Kyoto, August 25–26, 1997. Springer. p. 137. ISBN 1-4020-0657-8.
  120. ^ Palmieri, Paolo (2001). "Galileo and the discovery of the phases of Venus". Journal for the History of Astronomy. 21 (2): 109–129. Bibcode:2001JHA....32..109P.
  121. ^ Fegley, B (2003). Venus (Treatise on Geochemistry ed.). Elsevier.
  122. ^ Kollerstrom, Nicholas (2004). "William Crabtree's Venus transit observation" (PDF). Proceedings IAU Colloquium No. 196, 2004. International Astronomical Union. Retrieved 10 May 2012.
  123. ^ Marov, Mikhail Ya. (2004). D.W. Kurtz (ed.). Mikhail Lomonosov and the discovery of the atmosphere of Venus during the 1761 transit. Proceedings of IAU Colloquium No. 196. Preston, U.K.: Cambridge University Press. pp. 209–219. Bibcode:2005tvnv.conf..209M. doi:10.1017/S1743921305001390.
  124. ^ "Mikhail Vasilyevich Lomonosov". Britannica online encyclopedia. Encyclopædia Britannica, Inc. Retrieved 12 July 2009.
  125. ^ Russell, H. N. (1899). "The Atmosphere of Venus". Astrophysical Journal. 9: 284–299. Bibcode:1899ApJ.....9..284R. doi:10.1086/140593.
  126. ^ Hussey, T. (1832). "On the Rotation of Venus". Monthly Notices of the Royal Astronomical Society. 2: 78–126. Bibcode:1832MNRAS...2...78H. doi:10.1093/mnras/2.11.78d.
  127. ^ Ross, F. E. (1928). "Photographs of Venus". Astrophysical Journal. 68–92: 57. Bibcode:1928ApJ....68...57R. doi:10.1086/143130.
  128. ^ Slipher, V. M. (1903). "A Spectrographic Investigation of the Rotation Velocity of Venus". Astronomische Nachrichten. 163 (3–4): 35–52. Bibcode:1903AN....163...35S. doi:10.1002/asna.19031630303.
  129. ^ Goldstein, R. M.; Carpenter, R. L. (1963). "Rotation of Venus: Period Estimated from Radar Measurements". Science. 139 (3558): 910–911. Bibcode:1963Sci...139..910G. doi:10.1126/science.139.3558.910. PMID 17743054.
  130. ^ Campbell, D. B.; Dyce, R. B.; Pettengill G. H. (1976). "New radar image of Venus". Science. 193 (4258): 1123–1124. Bibcode:1976Sci...193.1123C. doi:10.1126/science.193.4258.1123. PMID 17792750.
  131. ^ Carolynn Young (August 1990). "Chapter 8, What's in a Name?". The Magellan Venus Explorer's Guide. NASA/JPL. Retrieved 21 July 2009.
  132. ^ Mitchell, Don (2003). "Inventing The Interplanetary Probe". The Soviet Exploration of Venus. Retrieved 27 December 2007.
  133. ^ Mayer; McCullough; Sloanaker (January 1958). "Observations of Venus at 3.15-cm Wave Length". The Astrophysical Journal. 127: 1. Bibcode:1958ApJ...127....1M. doi:10.1086/146433. ((cite journal)): Unknown parameter |last-author-amp= ignored (|name-list-style= suggested) (help)
  134. ^ Jet Propulsion Laboratory (1962). "Mariner-Venus 1962 Final Project Report" (PDF). SP-59. NASA. ((cite journal)): Cite journal requires |journal= (help)
  135. ^ a b c d Mitchell, Don (2003). "Plumbing the Atmosphere of Venus". The Soviet Exploration of Venus. Retrieved 27 December 2007.
  136. ^ Eshleman, V.; Fjeldbo, G. (1969). "The atmosphere of Venus as studied with the Mariner 5 dual radio-frequency occultation experiment" (PDF). Radio Science. SU-SEL-69-003. 4 (10). NASA: 879–897. Bibcode:1969RaSc....4..879F. doi:10.1029/RS004i010p00879.
  137. ^ "Report on the Activities of the COSPAR Working Group VII". Preliminary Report, COSPAR Twelfth Plenary Meeting and Tenth International Space Science Symposium. Prague, Czechoslovakia: National Academy of Sciences. 11–24 May 1969. p. 94. ((cite conference)): Unknown parameter |booktitle= ignored (|book-title= suggested) (help)
  138. ^ Sagdeev, Roald; Eisenhower, Susan (28 May 2008). "United States-Soviet Space Cooperation during the Cold War". Retrieved 19 July 2009.
  139. ^ Mitchell, Don (2003). "First Pictures of the Surface of Venus". The Soviet Exploration of Venus. Retrieved 27 December 2007.
  140. ^ Dunne, J.; Burgess, E. (1978). "The Voyage of Mariner 10" (PDF). SP-424. NASA. Retrieved 12 July 2009. ((cite journal)): Cite journal requires |journal= (help)
  141. ^ Colin, L.; Hall, C. (1977). "The Pioneer Venus Program". Space Science Reviews. 20 (3): 283–306. Bibcode:1977SSRv...20..283C. doi:10.1007/BF02186467.
  142. ^ Williams, David R. (6 January 2005). "Pioneer Venus Project Information". NASA Goddard Space Flight Center. Retrieved 19 July 2009.
  143. ^ a b c Mitchell, Don (2003). "Drilling into the Surface of Venus". The Soviet Exploration of Venus. Retrieved 27 December 2007.
  144. ^ Greeley, Ronald; Batson, Raymond M. (2007). Planetary Mapping. Cambridge University Press. p. 47. ISBN 978-0-521-03373-2. Retrieved 19 July 2009.
  145. ^ Linkin, V.; Blamont, J.; Preston, R. (1985). "The Vega Venus Balloon experiment". Bulletin of the American Astronomical Society. 17: 722. Bibcode:1985BAAS...17..722L.
  146. ^ Sagdeev, R. Z.; Linkin, V. M.; Blamont, J. E.; Preston, R. A. (1986). "The VEGA Venus Balloon Experiment". Science. 231 (4744): 1407–1408. Bibcode:1986Sci...231.1407S. doi:10.1126/science.231.4744.1407. JSTOR 1696342. PMID 17748079.
  147. ^ Lyons, Daniel T.; Saunders, R. Stephen; Griffith, Douglas G. (May–June 1995). "The Magellan Venus mapping mission: Aerobraking operations". Acta Astronautica. 35 (9–11): 669–676. Bibcode:1995AcAau..35..669L. doi:10.1016/0094-5765(95)00032-U.
  148. ^ "Magellan begins termination activities". JPL Universe. 9 September 1994. Retrieved 30 July 2009.
  149. ^ Van Pelt, Michel (2006). Space invaders: how robotic spacecraft explore the Solar System. Springer. pp. 186–189. ISBN 0-387-33232-4.
  150. ^ Davis, Andrew M.; Holland, Heinrich D.; Turekian, Karl K. (2005). Meteorites, comets, and planets. Elsevier. p. 489. ISBN 0-08-044720-1.
  151. ^ a b "Cassini Completes Second Venus Flyby". NASA. 24 June 1999. Retrieved 16 October 2015.
  152. ^ "Timeline". MESSENGER. Retrieved 9 February 2008.
  153. ^ a b "Venus Express". ESA Portal. European Space Agency. Retrieved 9 February 2008.
  154. ^ a b Stephen Clark (7 February 2015). "Japanese craft to get second chance after missing Venus in 2010". Retrieved 26 April 2015.
  155. ^ "Venus Climate Orbiter "PLANET-C"". JAXA. Retrieved 9 February 2008.
  156. ^ Clark, Stephen (6 December 2015). "Japanese probe fires rockets to steer into orbit at Venus". Spaceflight Now. Retrieved 10 December 2015.
  157. ^ G. A. Landis, "Robotic Exploration of the Surface and Atmosphere of Venus", paper IAC-04-Q.2.A.08, Acta Astronautica, Vol. 59, 7, 517–580 (October 2006). See animation
  158. ^ "BepiColombo". ESA Spacecraft Operations. Retrieved 9 February 2008.
  159. ^ "title". Retrieved 4 January 2015.
  160. ^ "Solar Probe Plus: A NASA Mission to Touch the Sun". Johns Hopkins University, Applied Physics Laboratory. Retrieved 18 January 2015.
  161. ^ "New Frontiers missions 2009". NASA. Retrieved 9 December 2011.
  162. ^ "РАН: запуск "Венеры-Д" состоится не ранее 2024 года". 9 April 2012. Retrieved 26 September 2013.
  163. ^ Landis, Geoffrey A.; Colozza, Anthony; LaMarre, Christopher M. (June 2002). "Atmospheric Flight on Venus". NASA Glenn Research Center Technical Reports. NASA. Archived from the original on 31 May 2011. Retrieved 18 September 2008. ((cite web)): Unknown parameter |deadurl= ignored (|url-status= suggested) (help)
  164. ^ Venus Plane Pushed for Next NASA Next Frontiers Mission. Space Dan Leone; 11 May 2015.
  165. ^ "U.S. and Russia to resume talks on joint mission to Venus". Spaceflight Insider. 5 October 2015. Retrieved 11 January 2016.
  166. ^ a b Feldman, M. S.; Ferrara, L. A.; Havenstein, P. L.; Volonte, J. E.; Whipple, P. H. (1967). Manned Venus Flyby, February 1, 1967 (PDF). Bellcomm, Inc.
  167. ^ Zak, Anatoly (3 March 2010). "Spacecraft: Manned Martian Expedition". Russianspaceweb.
  168. ^ Portree, David (15 June 2013). "Things To Do During a Piloted Venus/Mars/Venus Flyby Mission (1968)". Wired.
  169. ^ Alan Boyle. "Mars Flyby Schedule Reset for 2021, But Will It Ever Fly?". NBC News.
  170. ^ "Venus sample return missions – A range of science, a range of costs" (PDF). Jet Propulsion Laboratory. 2014. Retrieved 11 January 2016.
  171. ^ a b "Venus Exploration Timeline".
  172. ^ "An unheralded anniversary". The Planetary Society. 2012. Retrieved 11 January 2016.
  173. ^ "Venus Exploration Themes" (PDF). Venus Exploration Analysis Group. Lunar and Planetary Institute. February 2014.
  174. ^ Nicholson, Seth B. (1961). "The Trojan Asteroids". Astronomical Society of the Pacific Leaflets. 8: 239. Bibcode:1961ASPL....8..239N.
  175. ^ Cessna, Abby. "Mythology of the Planets". Universe Today. Fraser Cain. Retrieved 19 September 2011.
  176. ^ a b c Stearn, William (May 1968). "The Origin of the Male and Female Symbols of Biology". Taxon. 11 (4): 109–113. doi:10.2307/1217734. JSTOR 1217734.
  177. ^ a b c Landis, Geoffrey A. (2003). "Colonization of Venus". AIP Conference Proceedings. Vol. 654. pp. 1193–1198. doi:10.1063/1.1541418. ((cite conference)): Unknown parameter |booktitle= ignored (|book-title= suggested) (help)

Cartographic resources