This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (September 2018) (Learn how and when to remove this message) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Hypercharge" – news · newspapers · books · scholar · JSTOR (September 2018) (Learn how and when to remove this message) (Learn how and when to remove this message)

In particle physics, the hypercharge (a portmanteau of hyperonic and charge) Y of a particle is a quantum number conserved under the strong interaction. The concept of hypercharge provides a single charge operator that accounts for properties of isospin, electric charge, and flavour. The hypercharge is useful to classify hadrons; the similarly named weak hypercharge has an analogous role in the electroweak interaction.

Definition

Hypercharge is one of two quantum numbers of the SU(3) model of hadrons, alongside isospin I3. The isospin alone was sufficient for two quark flavours — namely
u
and
d
— whereas presently 6 flavours of quarks are known.

SU(3) weight diagrams (see below) are 2 dimensional, with the coordinates referring to two quantum numbers: I3 (also known as Iz), which is the z component of isospin, and Y, which is the hypercharge (defined by strangeness S, charm C, bottomness B′, topness T′, and baryon number B). Mathematically, hypercharge is [1]

Strong interactions conserve hypercharge (and weak hypercharge), but weak interactions do not.

Relation with electric charge and isospin

Main article: Gell-Mann–Nishijima formula

The Gell-Mann–Nishijima formula relates isospin and electric charge

where I3 is the third component of isospin and Q is the particle's charge.

Isospin creates multiplets of particles whose average charge is related to the hypercharge by:

since the hypercharge is the same for all members of a multiplet, and the average of the I3 values is 0.

These definitions in their original form hold only for the three lightest quarks.

SU(3) model in relation to hypercharge

The SU(2) model has multiplets characterized by a quantum number J, which is the total angular momentum. Each multiplet consists of 2J + 1 substates with equally-spaced values of Jz, forming a symmetric arrangement seen in atomic spectra and isospin. This formalizes the observation that certain strong baryon decays were not observed, leading to the prediction of the mass, strangeness and charge of the
Ω
baryon
.

The SU(3) has supermultiplets containing SU(2) multiplets. SU(3) now needs two numbers to specify all its sub-states which are denoted by λ1 and λ2.

(λ1 + 1) specifies the number of points in the topmost side of the hexagon while (λ2 + 1) specifies the number of points on the bottom side.

Examples

Practical obsolescence

Hypercharge was a concept developed in the 1960s, to organize groups of particles in the "particle zoo" and to develop ad hoc conservation laws based on their observed transformations. With the advent of the quark model, it is now obvious that strong hypercharge, Y, is the following combination of the numbers of up (nu), down (nd), strange (ns), charm (nc), top (nt) and bottom (nb):

In modern descriptions of hadron interaction, it has become more obvious to draw Feynman diagrams that trace through the individual constituent quarks (which are conserved) composing the interacting baryons and mesons, rather than bothering to count strong hypercharge quantum numbers. Weak hypercharge, however, remains an essential part of understanding the electroweak interaction.

References

  1. ^ Particle Data Group, ed. (2022), 15. Quark Model (PDF)