This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article relies too much on references to primary sources. Please improve this by adding secondary or tertiary sources. (April 2017) (Learn how and when to remove this template message)This article includes a list of references, related reading or external links, but its sources remain unclear because it lacks inline citations. Please help to improve this article by introducing more precise citations. (January 2021) (Learn how and when to remove this template message) (Learn how and when to remove this template message)

ISO/IEC 15693, is an ISO standard for vicinity cards, i.e. cards which can be read from a greater distance as compared with proximity cards. Such cards can normally be read out by a reader without being powered themselves, as the reader will supply the necessary power to the card over the air (wireless).

ISO/IEC 15693 systems operate at the 13.56 MHz frequency, and offer maximum read distance of 1–1.5 meters. As the vicinity cards have to operate at a greater distance, the necessary magnetic field is less (0.15 to 5 A/m) than that for a proximity card (1.5 to 7.5 A/m).

Example applications

Communication to the card

Communication from the reader to the card uses an amplitude-shift keying with 10% or 100% modulation index.

The data coding is:

1 out of 4 pulse-position modulation
2 bits are coded as the position of a 9.44 μs pause in a 75.52 μs symbol time, giving a bit rate of 26.48 kilobits per second. The least-significant bits are sent first.
1 out of 256 pulse-position modulation
8 bits are coded as the position of a 9.44 μs pause in a 4.833 ms symbol time, giving a bit rate of 1.65 kbit/s.

Communication to the reader

The card has two ways to send its data back to the reader:

Amplitude-shift keying

Amplitude-shift keying 100% modulation index on a 423.75 kHz subcarrier. The data rate can be:

A logic 0 starts with eight pulses of 423.75 kHz followed by an unmodulated time of 18.88 μs (256/ fc); a logic 1 is the other way round. The data frame delimiters are code violations, a start of frame is:

  1. an unmodulated time of 56.64 μs (768/ fc),
  2. 24 pulses of 423.75 kHz
  3. a logic 1

and the end of a frame is:

  1. a logic 0
  2. 24 pulses of 423.75 kHz
  3. an unmodulated time of 56.64 μs

The data are sent using a Manchester code.

Frequency-shift keying

Frequency-shift keying by switching between a 423.75 kHz sub carrier (operating frequency divided by 32) and a 484.25 kHz sub carrier (operating frequency divided by 28). The data rate can be:

A logic 0 starts with eight pulses of 423.75 kHz followed by nine pulses of 484.28 kHz; a logic 1 is the other way round. The data frame delimiters are code violations, a start of frame is:

  1. 27 pulses of 484.28 kHz
  2. 24 pulses of 423.75 kHz
  3. a logic 1

and the end of a frame is:

  1. a logic 0
  2. 24 pulses of 423.75 kHz
  3. 27 pulses of 484.28 kHz

The data are sent using a Manchester code.

Manufacturer codes

see ISO/IEC 7816-6

  1. Code 0x01: Motorola
  2. Code 0x02: ST Microelectronics
  3. Code 0x03: Hitachi
  4. Code 0x04: NXP Semiconductors
  5. Code 0x05: Infineon Technologies
  6. Code 0x06: Cylinc
  7. Code 0x07: Texas Instruments Tag-it
  8. Code 0x08: Fujitsu Limited
  9. Code 0x09: Matsushita Electric Industrial
  10. Code 0x0A: NEC
  11. Code 0x0B: Oki Electric
  12. Code 0x0C: Toshiba
  13. Code 0x0D: Mitsubishi Electric
  14. Code 0x0E: Samsung Electronics
  15. Code 0x0F: Hyundai Electronics
  16. Code 0x10: LG Semiconductors
  17. Code 0x12: WISeKey
  18. Code 0x16: EM Microelectronic-Marin
  19. Code 0x1F: Melexis
  20. Code 0x2B: Maxim Integrated
  21. Code 0x33: AMIC
  22. Code 0x39: Silicon Craft Technology
  23. Code 0x44: GenTag, Inc (USA)
  24. Code 0x45: Invengo Information Technology Co.Ltd

Implementations

The first byte of the UID should always be 0xE0.

Products with ISO15693 interface