This list contains quantum processors, also known as quantum processing units (QPUs). Some devices listed below have only been announced at press conferences so far, with no actual demonstrations or scientific publications characterizing the performance.

Circuit-based quantum processors

These QPUs are based on the quantum circuit and quantum logic gate-based model of computing.

Manufacturer Name/Codename/Designation Architecture Layout Socket Fidelity Qubits Release date
Google N/A Superconducting N/A N/A 99.5%[1] 20 qb 2017
Google N/A Superconducting 7×7 lattice N/A 99.7%[1] 49 qb[2] Q4 2017 (planned)
Google Bristlecone Superconducting transmon 6×12 lattice N/A 99% (readout)
99.9% (1 qubit)
99.4% (2 qubits)
72 qb[3][4] March 5, 2018
Google Sycamore Superconducting transmon 9×6 lattice N/A N/A 53 qb effective 2019
USTC Jiuzhang Photonics N/A N/A N/A 76 qb[5][6] 2020
Xanadu X8 [7] Photonics N/A N/A N/A 8 qb 2020
Xanadu X12 Photonics N/A N/A N/A 12 qb 2020[7]
Xanadu X24 Photonics N/A N/A N/A 24 qb 2020[7]
IBM IBM Q 5 Tenerife Superconducting bow tie N/A 99.897% (average gate)
98.64% (readout)
5 qb 2016[1]
IBM IBM Q 5 Yorktown Superconducting bow tie N/A 99.545% (average gate)
94.2% (readout)
5 qb
IBM IBM Q 14 Melbourne Superconducting N/A N/A 99.735% (average gate)
97.13% (readout)
14 qb
IBM IBM Q 16 Rüschlikon Superconducting 2×8 lattice N/A 99.779% (average gate)
94.24% (readout)
16 qb[8] May 17, 2017
(Retired: 26 September 2018)[9]
IBM IBM Q 17 Superconducting N/A N/A N/A 17 qb[8] May 17, 2017
IBM IBM Q 20 Tokyo Superconducting 5×4 lattice N/A 99.812% (average gate)
93.21% (readout)
20 qb[10] November 10, 2017
IBM IBM Q 20 Austin Superconducting 5×4 lattice N/A N/A 20 qb (Retired: 4 July 2018)[9]
IBM IBM Q 50 prototype Superconducting transmon N/A N/A N/A 50 qb[10]
IBM IBM Q 53 Superconducting N/A N/A N/A 53 qb October 2019
IBM IBM Eagle Superconducting N/A N/A N/A 127 qubit November 2021
Intel 17-Qubit Superconducting Test Chip Superconducting N/A 40-pin cross gap N/A 17 qb[11][12] October 10, 2017
Intel Tangle Lake Superconducting N/A 108-pin cross gap N/A 49 qb[13] January 9, 2018
Rigetti 8Q Agave Superconducting N/A N/A N/A 8 qb June 4, 2018[14]
Rigetti 16Q Aspen-1 Superconducting N/A N/A N/A 16 qb November 30, 2018[14]
Rigetti 19Q Acorn Superconducting transmon N/A N/A N/A 19 qb[15] December 17, 2017
IBM IBM Armonk[16] Superconducting Single Qubit N/A N/A 1 qb October 16, 2019
IBM IBM Ourense[16] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM Vigo[16] Superconducting T N/A N/A 5 qb July 3, 2019
IBM IBM London[16] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Burlington[16] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Essex[16] Superconducting T N/A N/A 5 qb September 13, 2019
IBM IBM Athens [17] Superconducting QV32 [18] N/A N/A 5 qb
IBM IBM Belem[17] Superconducting QV16 N/A N/A 5 qb
IBM IBM Bogotá [17] Superconducting QV32 [18] N/A N/A 5 qb
IBM IBM Casablanca [17] Superconducting QV32 [18] N/A N/A 7 qb (Retired - March 2022)
IBM IBM Dublin [17] Superconducting QV64 N/A N/A 27 qb
IBM IBM Guadalupe [17] Superconducting QV32 [18] N/A N/A 16 qb
IBM IBM Kolkata Superconducting QV128 N/A N/A 27 qb
IBM IBM Lima [17] Superconducting QV8 N/A N/A 5 qb
IBM IBM Manhattan [17] Superconducting QV32 [18] N/A N/A 65 qb
IBM IBM Montreal [17] Superconducting QV128 N/A N/A 27 qb
IBM IBM Mumbai [17] Superconducting QV128 N/A N/A 27 qb
IBM IBM Paris [17] Superconducting QV32 [18] N/A N/A 27 qb
IBM IBM Quito [17] Superconducting QV16 N/A N/A 5 qb
IBM IBM Rome [17] Superconducting QV32 [18] N/A N/A 5 qb
IBM IBM Santiago [17] Superconducting QV32 [18] N/A N/A 5 qb
IBM IBM Sydney [17] Superconducting QV32 [18] N/A N/A 27 qb
IBM IBM Toronto [17] Superconducting QV32 [18] N/A N/A 27 qb
QuTech at TU Delft Spin-2 Semiconductor spin qubits 99% (average gate)
85%(readout)[19]
2 qb 2020
QuTech at TU Delft Starmon-5 Superconducting X configuration 97% (readout)[20] 5 qb 2020
IonQ Trapped ion 32x1 chain[21] N/A 99.98% (1 qubit)
98.5-99.3% (2 qubit)[21]
32 qb

Annealing quantum processors

These QPUs are based on quantum annealing.

Manufacturer Name/Codename/Designation Architecture Layout Socket Fidelity Qubits Release date
D-Wave D-Wave One (Ranier) Superconducting C4 = Chimera(4,4,4)[22] = 4×4 K4,4 N/A N/A 128 qb 11 May 2011
D-Wave D-Wave Two Superconducting C8 = Chimera(8,8,4)[22] = 8×8 K4,4 N/A N/A 512 qb 2013
D-Wave D-Wave 2X Superconducting C12 = Chimera(12,12,4)[22][23] = 12×12 K4,4 N/A N/A 1152 qb 2015
D-Wave D-Wave 2000Q Superconducting C16 = Chimera(16,16,4)[22] = 16×16 K4,4 N/A N/A 2048 qb 2017
D-Wave D-Wave Advantage Superconducting Pegasus P16[24][25] N/A N/A 5760 qb 2020

See also

References

  1. ^ a b c Lant, Karla (2017-06-23). "Google is Closer Than Ever to a Quantum Computer Breakthrough". Futurism. Retrieved 2017-10-18.
  2. ^ Simonite, Tom (2017-04-21). "Google's New Chip Is a Stepping Stone to Quantum Computing Supremacy". MIT Technology Review. Retrieved 2017-10-18.
  3. ^ "A Preview of Bristlecone, Google's New Quantum Processor", Research (World wide web log), Google, March 2018.
  4. ^ Greene, Tristan (2018-03-06). "Google reclaims quantum computer crown with 72 qubit processor". The Next Web. Retrieved 2018-06-27.
  5. ^ Ball, Philip (2020-12-03). "Physicists in China challenge Google's 'quantum advantage'". Nature. 588 (7838): 380. Bibcode:2020Natur.588..380B. doi:10.1038/d41586-020-03434-7. PMID 33273711.
  6. ^ December 2020, Rafi Letzter-Staff Writer 07 (7 December 2020). "China claims fastest quantum computer in the world". livescience.com. Retrieved 2020-12-19.
  7. ^ a b c "A new kind of quantum". spie.org. Retrieved 2021-01-09.
  8. ^ a b "IBM Builds Its Most Powerful Universal Quantum Computing Processors". IBM. 2017-05-17. Retrieved 2017-10-18.
  9. ^ a b "Quantum devices & simulators". IBM Q. 2018-06-05. Retrieved 2019-03-29.
  10. ^ a b "IBM Announces Advances to IBM Quantum Systems & Ecosystem". 10 November 2017. Retrieved 10 November 2017.
  11. ^ "Intel Delivers 17-Qubit Superconducting Chip with Advanced Packaging to QuTech". 2017-10-10. Retrieved 2017-10-18.
  12. ^ Novet, Jordan (2017-10-10). "Intel shows off its latest chip for quantum computing as it looks past Moore's Law". CNBC. Retrieved 2017-10-18.
  13. ^ "CES 2018: Intel's 49-Qubit Chip Shoots for Quantum Supremacy". 2018-01-09. Retrieved 2018-01-14.
  14. ^ a b "QPU". Rigetti Computing. Retrieved 2019-03-24.
  15. ^ "Unsupervised Machine Learning on Rigetti 19Q with Forest 1.2". 2017-12-18. Retrieved 2018-03-21.
  16. ^ a b c d e f "IBM Q Experience". IBM Q Experience. Retrieved 2020-01-04.
  17. ^ a b c d e f g h i j k l m n o p IBM Quantum. https://quantum-computing.ibm.com/, 2021
  18. ^ a b c d e f g h i j IBM Research Blog. https://www.ibm.com/blogs/research/2020/07/qv32-performance/, 2021
  19. ^ "Spin-2". Quantum Inspire. Retrieved 5 May 2021.((cite web)): CS1 maint: url-status (link)
  20. ^ "Starmon-5". Quantum Inspire. Retrieved 4 May 2021.((cite web)): CS1 maint: url-status (link)
  21. ^ a b arXiv:2009.11482
  22. ^ a b c d Misha Denil and Nando de Freitas, Toward the Implementation of a Quantum RBM. In NIPS Deep Learning and Unsupervised Feature Learning Workshop, 2011
  23. ^ https://www.researchgate.net/publication/332478892_Embedding_Equality_Constraints_of_Optimization_Problems_into_a_Quantum_Annealer
  24. ^ Dattani, Nike; Szalay, Szilard; Chancellor, Nicholas (22 Jan 2019). "Pegasus: The second connectivity graph for large-scale quantum annealing hardware". arXiv:1901.07636 [quant-ph].
  25. ^ Dattani, Nike; Chancellor, Nicholas (23 Jan 2019). "Embedding quadratization gadgets on Chimera and Pegasus graphs". arXiv:1901.07676 [quant-ph].