 A tea light-type candle, imaged with a luminance camera; false colors indicate luminance levels per the bar on the right (cd/m2)

Luminance is a photometric measure of the luminous intensity per unit area of light travelling in a given direction. It describes the amount of light that passes through, is emitted from, or is reflected from a particular area, and falls within a given solid angle.

The procedure for conversion from spectral radiance to luminance is standardized by the CIE and ISO.

Brightness is the term for the subjective impression of the objective luminance measurement standard (see Objectivity (science) § Objectivity in measurement for the importance of this contrast).

The SI unit for luminance is candela per square metre (cd/m2). A non-SI term for the same unit is the nit. The unit in the Centimetre–gram–second system of units (CGS) (which predated the SI system) is the stilb, which is equal to one candela per square centimetre or 10 kcd/m2.

## Description

Luminance is often used to characterize emission or reflection from flat, diffuse surfaces. Luminance levels indicate how much luminous power could be detected by the human eye looking at a particular surface from a particular angle of view. Luminance is thus an indicator of how bright the surface will appear. In this case, the solid angle of interest is the solid angle subtended by the eye's pupil.

Luminance is used in the video industry to characterize the brightness of displays. A typical computer display emits between 50 and 300 cd/m2. The sun has a luminance of about 1.6×109 cd/m2 at noon.

Luminance is invariant in geometric optics. This means that for an ideal optical system, the luminance at the output is the same as the input luminance.

For real, passive optical systems, the output luminance is at most equal to the input. As an example, if one uses a lens to form an image that is smaller than the source object, the luminous power is concentrated into a smaller area, meaning that the illuminance is higher at the image. The light at the image plane, however, fills a larger solid angle so the luminance comes out to be the same assuming there is no loss at the lens. The image can never be "brighter" than the source.

## Health effects

 Further information: Laser safety

Retinal damage can occur when the eye is exposed to high luminance. Damage can occur because of local heating of the retina. Photochemical effects can also cause damage, especially at short wavelengths.

The IEC 60825 series gives guidance on safety relating to exposure of the eye to lasers, which are high luminance sources. The IEC 62471 series gives guidance for evaluating the photobiological safety of lamps and lamp systems including luminaires. Specifically it specifies the exposure limits, reference measurement technique and classification scheme for the evaluation and control of photobiological hazards from all electrically powered incoherent broadband sources of optical radiation, including LEDs but excluding lasers, in the wavelength range from 200 nm through 3000 nm. This standard was prepared as Standard CIE S 009:2002 by the International Commission on Illumination.

## Luminance meter

A luminance meter is a device used in photometry that can measure the luminance in a particular direction and with a particular solid angle. The simplest devices measure the luminance in a single direction while imaging luminance meters measure luminance in a way similar to the way a digital camera records color images.

## Formulation Parameters for defining the luminance

The luminance of a specified point of a light source, in a specified direction, is defined by the mixed partial derivative

$L_{\mathrm {v} }={\frac {\mathrm {d} ^{2}\Phi _{\mathrm {v} )){\mathrm {d} \Sigma \,\mathrm {d} \Omega _{\Sigma }\cos \theta _{\Sigma )))$ where

• Lv is the luminance (cd/m2),
• d2Φv is the luminous flux (lm) leaving the area dΣ in any direction contained inside the solid angle dΩΣ,
• dΣ is an infinitesimal area (m2) of the source containing the specified point,
• dΩΣ is an infinitesimal solid angle (sr) containing the specified direction,
• θΣ is the angle between the normal nΣ to the surface dΣ and the specified direction.

If light travels through a lossless medium, the luminance does not change along a given light ray. As the ray crosses an arbitrary surface S, the luminance is given by

$L_{\mathrm {v} }={\frac {\mathrm {d} ^{2}\Phi _{\mathrm {v} )){\mathrm {d} S\,\mathrm {d} \Omega _{S}\cos \theta _{S)))$ where

• dS is the infinitesimal area of S seen from the source inside the solid angle dΩΣ,
• dΩS is the infinitesimal solid angle subtended by dΣ as seen from dS,
• θS is the angle between the normal nS to dS and the direction of the light.

More generally, the luminance along a light ray can be defined as

$L_{\mathrm {v} }=n^{2}{\frac {\mathrm {d} \Phi _{\mathrm {v} )){\mathrm {d} G))$ where

• dG is the etendue of an infinitesimally narrow beam containing the specified ray,
• dΦv is the luminous flux carried by this beam,
• n is the index of refraction of the medium.

## Relation to illuminance Comparison of photometric and radiometric quantities

The luminance of a reflecting surface is related to the illuminance it receives:

$\int _{\Omega _{\Sigma ))L_{\text{v))\mathrm {d} \Omega _{\Sigma }\cos \theta _{\Sigma }=M_{\text{v))=E_{\text{v))R,$ where the integral covers all the directions of emission ΩΣ,

In the case of a perfectly diffuse reflector (also called a Lambertian reflector), the luminance is isotropic, per Lambert's cosine law. Then the relationship is simply

$L_{\text{v))={\frac {E_{\text{v))R}{\pi )).$ ## Units

A variety of units have been used for luminance, besides the candela per square metre.

.mw-parser-output .hlist dl,.mw-parser-output .hlist ol,.mw-parser-output .hlist ul{margin:0;padding:0}.mw-parser-output .hlist dd,.mw-parser-output .hlist dt,.mw-parser-output .hlist li{margin:0;display:inline}.mw-parser-output .hlist.inline,.mw-parser-output .hlist.inline dl,.mw-parser-output .hlist.inline ol,.mw-parser-output .hlist.inline ul,.mw-parser-output .hlist dl dl,.mw-parser-output .hlist dl ol,.mw-parser-output .hlist dl ul,.mw-parser-output .hlist ol dl,.mw-parser-output .hlist ol ol,.mw-parser-output .hlist ol ul,.mw-parser-output .hlist ul dl,.mw-parser-output .hlist ul ol,.mw-parser-output .hlist ul ul{display:inline}.mw-parser-output .hlist .mw-empty-li{display:none}.mw-parser-output .hlist dt::after{content:": "}.mw-parser-output .hlist dd::after,.mw-parser-output .hlist li::after{content:" · ";font-weight:bold}.mw-parser-output .hlist dd:last-child::after,.mw-parser-output .hlist dt:last-child::after,.mw-parser-output .hlist li:last-child::after{content:none}.mw-parser-output .hlist dd dd:first-child::before,.mw-parser-output .hlist dd dt:first-child::before,.mw-parser-output .hlist dd li:first-child::before,.mw-parser-output .hlist dt dd:first-child::before,.mw-parser-output .hlist dt dt:first-child::before,.mw-parser-output .hlist dt li:first-child::before,.mw-parser-output .hlist li dd:first-child::before,.mw-parser-output .hlist li dt:first-child::before,.mw-parser-output .hlist li li:first-child::before{content:" (";font-weight:normal}.mw-parser-output .hlist dd dd:last-child::after,.mw-parser-output .hlist dd dt:last-child::after,.mw-parser-output .hlist dd li:last-child::after,.mw-parser-output .hlist dt dd:last-child::after,.mw-parser-output .hlist dt dt:last-child::after,.mw-parser-output .hlist dt li:last-child::after,.mw-parser-output .hlist li dd:last-child::after,.mw-parser-output .hlist li dt:last-child::after,.mw-parser-output .hlist li li:last-child::after{content:")";font-weight:normal}.mw-parser-output .hlist ol{counter-reset:listitem}.mw-parser-output .hlist ol>li{counter-increment:listitem}.mw-parser-output .hlist ol>li::before{content:" "counter(listitem)"\a0 "}.mw-parser-output .hlist dd ol>li:first-child::before,.mw-parser-output .hlist dt ol>li:first-child::before,.mw-parser-output .hlist li ol>li:first-child::before{content:" ("counter(listitem)"\a0 "}.mw-parser-output .navbar{display:inline;font-size:88%;font-weight:normal}.mw-parser-output .navbar-collapse{float:left;text-align:left}.mw-parser-output .navbar-boxtext{word-spacing:0}.mw-parser-output .navbar ul{display:inline-block;white-space:nowrap;line-height:inherit}.mw-parser-output .navbar-brackets::before{margin-right:-0.125em;content:"[ "}.mw-parser-output .navbar-brackets::after{margin-left:-0.125em;content:" ]"}.mw-parser-output .navbar li{word-spacing:-0.125em}.mw-parser-output .navbar a>span,.mw-parser-output .navbar a>abbr{text-decoration:inherit}.mw-parser-output .navbar-mini abbr{font-variant:small-caps;border-bottom:none;text-decoration:none;cursor:inherit}.mw-parser-output .navbar-ct-full{font-size:114%;margin:0 7em}.mw-parser-output .navbar-ct-mini{font-size:114%;margin:0 4em} cd/m2 (SI unit)≡ nit ≡ lm/m2/sr stilb (sb) (CGS unit)≡ cd/cm2 apostilb (asb)≡ blondel bril skot (sk) lambert (L) 1 10−4 π ≈ 3.142 107 π ≈ 3.142×107 103 π ≈ 3.142×103 10−4 π ≈ 3.142×10−4 0.30482 π≈ 0.2919 104 1 104 π ≈ 3.142×104 1011 π ≈ 3.142×1011 107 π ≈ 3.142×107 π ≈ 3.142 30.482 π ≈ 2919 1 ⁄ π ≈ 0.3183 10−4 ⁄ π ≈ 3.183×10−5 1 107 103 10−4 0.30482 ≈ 0.09290 10−7 ⁄ π ≈ 3.183×10−8 10−11 ⁄ π ≈ 3.183×10−12 10−7 1 10−4 10−11 0.30482×10−7≈ 9.290×10−9 10−3 ⁄ π ≈ 3.183×10−4 10−7 ⁄ π ≈ 3.183×10−8 10−3 104 1 10−7 0.30482×10−3≈ 9.290×10−5 104 ⁄ π ≈ 3183 1 ⁄ π ≈ 0.3183 104 1011 107 1 0.30482×104 ≈ 929.0 1 ⁄ 0.30482 ⁄ π≈ 3.426 1 ⁄ 30.482 ⁄ π≈ 3.426×10−4 1 ⁄ 0.30482≈ 10.76 107 ⁄ 0.30482≈ 1.076×108 103 ⁄ 0.30482≈ 1.076×104 10−4 ⁄ 0.30482≈ 1.076×10−3 1

### Table of SI light-related units

Quantity Unit Dimension Notes
Name Symbol[nb 1] Name Symbol Symbol[nb 2]
Luminous energy Qv[nb 3] lumen second lm⋅s T J The lumen second is sometimes called the talbot.
Luminous flux, luminous power Φv[nb 3] lumen (= candela steradian) lm (= cd⋅sr) J Luminous energy per unit time
Luminous intensity Iv candela (= lumen per steradian) cd (= lm/sr) J Luminous flux per unit solid angle
Luminance Lv candela per square metre cd/m2 (= lm/(sr⋅m2)) L−2J Luminous flux per unit solid angle per unit projected source area. The candela per square metre is sometimes called the nit.
Illuminance Ev lux (= lumen per square metre) lx (= lm/m2) L−2J Luminous flux incident on a surface
Luminous exitance, luminous emittance Mv lumen per square metre lm/m2 L−2J Luminous flux emitted from a surface
Luminous exposure Hv lux second lx⋅s L−2T J Time-integrated illuminance
Luminous energy density ωv lumen second per cubic metre lm⋅s/m3 L−3T J
Luminous efficacy (of radiation) K lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to radiant flux
Luminous efficacy (of a source) η[nb 3] lumen per watt lm/W M−1L−2T3J Ratio of luminous flux to power consumption
Luminous efficiency, luminous coefficient V 1 Luminous efficacy normalized by the maximum possible efficacy