In mathematics, and in particular measure theory, a **measurable function** is a function between the underlying sets of two measurable spaces that preserves the structure of the spaces: the preimage of any measurable set is measurable. This is in direct analogy to the definition that a continuous function between topological spaces preserves the topological structure: the preimage of any open set is open. In real analysis, measurable functions are used in the definition of the Lebesgue integral. In probability theory, a measurable function on a probability space is known as a random variable.

Let and be measurable spaces, meaning that and are sets equipped with respective -algebras and A function is said to be measurable if for every the pre-image of under is in ; that is, for all

That is, where is the σ-algebra generated by f. If is a measurable function, one writes

to emphasize the dependency on the -algebras and

The choice of -algebras in the definition above is sometimes implicit and left up to the context. For example, for or other topological spaces, the Borel algebra (generated by all the open sets) is a common choice. Some authors define **measurable functions** as exclusively real-valued ones with respect to the Borel algebra.^{[1]}

If the values of the function lie in an infinite-dimensional vector space, other non-equivalent definitions of measurability, such as weak measurability and Bochner measurability, exist.

- Random variables are by definition measurable functions defined on probability spaces.
- If and are Borel spaces, a measurable function is also called a
**Borel function**. Continuous functions are Borel functions but not all Borel functions are continuous. However, a measurable function is nearly a continuous function; see Luzin's theorem. If a Borel function happens to be a section of a map it is called a**Borel section**. - A Lebesgue measurable function is a measurable function where is the -algebra of Lebesgue measurable sets, and is the Borel algebra on the complex numbers Lebesgue measurable functions are of interest in mathematical analysis because they can be integrated. In the case is Lebesgue measurable if and only if is measurable for all This is also equivalent to any of being measurable for all or the preimage of any open set being measurable. Continuous functions, monotone functions, step functions, semicontinuous functions, Riemann-integrable functions, and functions of bounded variation are all Lebesgue measurable.
^{[2]}A function is measurable if and only if the real and imaginary parts are measurable.

- The sum and product of two complex-valued measurable functions are measurable.
^{[3]}So is the quotient, so long as there is no division by zero.^{[1]} - If and are measurable functions, then so is their composition
^{[1]} - If and are measurable functions, their composition need not be -measurable unless Indeed, two Lebesgue-measurable functions may be constructed in such a way as to make their composition non-Lebesgue-measurable.
- The (pointwise) supremum, infimum, limit superior, and limit inferior of a sequence (viz., countably many) of real-valued measurable functions are all measurable as well.
^{[1]}^{[4]} - The pointwise limit of a sequence of measurable functions is measurable, where is a metric space (endowed with the Borel algebra). This is not true in general if is non-metrizable. The corresponding statement for continuous functions requires stronger conditions than pointwise convergence, such as uniform convergence.
^{[5]}^{[6]}

Real-valued functions encountered in applications tend to be measurable; however, it is not difficult to prove the existence of non-measurable functions. Such proofs rely on the axiom of choice in an essential way, in the sense that Zermelo–Fraenkel set theory without the axiom of choice does not prove the existence of such functions.

In any measure space * with a non-measurable set one can construct a non-measurable indicator function:
*

where is equipped with the usual Borel algebra. This is a non-measurable function since the preimage of the measurable set is the non-measurable

As another example, any non-constant function is non-measurable with respect to the trivial -algebra since the preimage of any point in the range is some proper, nonempty subset of which is not an element of the trivial