This article includes a list of references, related reading, or external links, but its sources remain unclear because it lacks inline citations. Please help improve this article by introducing more precise citations. (March 2016) (Learn how and when to remove this message)

In mathematics, **tightness** is a concept in measure theory. The intuitive idea is that a given collection of measures does not "escape to infinity".

Let be a Hausdorff space, and let be a σ-algebra on that contains the topology . (Thus, every open subset of is a measurable set and is at least as fine as the Borel σ-algebra on .) Let be a collection of (possibly signed or complex) measures defined on . The collection is called **tight** (or sometimes **uniformly tight**) if, for any , there is a compact subset of such that, for all measures ,

where is the total variation measure of . Very often, the measures in question are probability measures, so the last part can be written as

If a tight collection consists of a single measure , then (depending upon the author) may either be said to be a **tight measure** or to be an **inner regular measure**.

If is an -valued random variable whose probability distribution on is a tight measure then is said to be a **separable random variable** or a **Radon random variable**.

Another equivalent criterion of the tightness of a collection is sequentially weakly compact. We say the family of probability measures is sequentially weakly compact if for every sequence from the family, there is a subsequence of measures that converges weakly to some probability measure . It can be shown that a family of measure is tight if and only if it is sequentially weakly compact.

If is a metrisable compact space, then every collection of (possibly complex) measures on is tight. This is not necessarily so for non-metrisable compact spaces. If we take with its order topology, then there exists a measure on it that is not inner regular. Therefore, the singleton is not tight.

If is a Polish space, then every probability measure on is tight. Furthermore, by Prokhorov's theorem, a collection of probability measures on is tight if and only if it is precompact in the topology of weak convergence.

Consider the real line with its usual Borel topology. Let denote the Dirac measure, a unit mass at the point in . The collection

is not tight, since the compact subsets of are precisely the closed and bounded subsets, and any such set, since it is bounded, has -measure zero for large enough . On the other hand, the collection

is tight: the compact interval will work as for any . In general, a collection of Dirac delta measures on is tight if, and only if, the collection of their supports is bounded.

Consider -dimensional Euclidean space with its usual Borel topology and σ-algebra. Consider a collection of Gaussian measures

where the measure has expected value (mean) and covariance matrix . Then the collection is tight if, and only if, the collections and are both bounded.

Tightness is often a necessary criterion for proving the weak convergence of a sequence of probability measures, especially when the measure space has infinite dimension. See

A strengthening of tightness is the concept of exponential tightness, which has applications in large deviations theory. A family of probability measures on a Hausdorff topological space is said to be **exponentially tight** if, for any , there is a compact subset of such that