In model theory, a first-order theory is called model complete if every embedding of its models is an elementary embedding. Equivalently, every first-order formula is equivalent to a universal formula. This notion was introduced by Abraham Robinson.

Model companion and model completion

A companion of a theory T is a theory T* such that every model of T can be embedded in a model of T* and vice versa.

A model companion of a theory T is a companion of T that is model complete. Robinson proved that a theory has at most one model companion. Not every theory is model-companionable, e.g. theory of groups. However if T is an -categorical theory, then it always has a model companion.[1][2]

A model completion for a theory T is a model companion T* such that for any model M of T, the theory of T* together with the diagram of M is complete. Roughly speaking, this means every model of T is embeddable in a model of T* in a unique way.

If T* is a model companion of T then the following conditions are equivalent:[3]

If T also has universal axiomatization, both of the above are also equivalent to:

Examples

Non-examples

Sufficient condition for completeness of model-complete theories

If T is a model complete theory and there is a model of T that embeds into any model of T, then T is complete.[4]

Notes

  1. ^ D. Saracino. Model Companions for0-Categorical Theories. Proceedings of the American Mathematical Society Vol. 39, No. 3 (Aug., 1973), pp. 591–598
  2. ^ H. Simmons. Large and Small Existentially Closed Structures. J. Symb. Log. 41 (2): 379–390 (1976)
  3. ^ Chang, C. C.; Keisler, H. Jerome (2012). Model Theory (Third edition ed.). Dover Publications. pp. 672 pages.
  4. ^ David Marker (2002). Model Theory: An Introduction. Springer-Verlag New York.

References