This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "N-curve" – news · newspapers · books · scholar · JSTOR (October 2009) (Learn how and when to remove this message) This article's lead section may be too short to adequately summarize the key points. Please consider expanding the lead to provide an accessible overview of all important aspects of the article. (October 2019) (Learn how and when to remove this message)

We take the functional theoretic algebra C[0, 1] of curves. For each loop γ at 1, and each positive integer n, we define a curve called n-curve.[clarification needed] The n-curves are interesting in two ways.

  1. Their f-products, sums and differences give rise to many beautiful curves.
  2. Using the n-curves, we can define a transformation of curves, called n-curving.

Multiplicative inverse of a curve

[edit]

A curve γ in the functional theoretic algebra C[0, 1], is invertible, i.e.

exists if

If , where , then

The set G of invertible curves is a non-commutative group under multiplication. Also the set H of loops at 1 is an Abelian subgroup of G. If , then the mapping is an inner automorphism of the group G.

We use these concepts to define n-curves and n-curving.

n-curves and their products

[edit]

If x is a real number and [x] denotes the greatest integer not greater than x, then

If and n is a positive integer, then define a curve by

is also a loop at 1 and we call it an n-curve. Note that every curve in H is a 1-curve.

Suppose Then, since .

Example 1: Product of the astroid with the n-curve of the unit circle

[edit]

Let us take u, the unit circle centered at the origin and α, the astroid. The n-curve of u is given by,

and the astroid is

The parametric equations of their product are

See the figure.

Since both are loops at 1, so is the product.

n-curve with
Animation of n-curve for n values from 0 to 50

Example 2: Product of the unit circle and its n-curve

[edit]

The unit circle is

and its n-curve is

The parametric equations of their product

are

See the figure.

Example 3: n-Curve of the Rhodonea minus the Rhodonea curve

[edit]

Let us take the Rhodonea Curve

If denotes the curve,

The parametric equations of are

n-Curving

[edit]

If , then, as mentioned above, the n-curve . Therefore, the mapping is an inner automorphism of the group G. We extend this map to the whole of C[0, 1], denote it by and call it n-curving with γ. It can be verified that

This new curve has the same initial and end points as α.

Example 1 of n-curving

[edit]

Let ρ denote the Rhodonea curve , which is a loop at 1. Its parametric equations are

With the loop ρ we shall n-curve the cosine curve

The curve has the parametric equations

See the figure.

It is a curve that starts at the point (0, 1) and ends at (2π, 1).

Notice how the curve starts with a cosine curve at N=0. Please note that the parametric equation was modified to center the curve at origin.

Example 2 of n-curving

[edit]

Let χ denote the Cosine Curve

With another Rhodonea Curve

we shall n-curve the cosine curve.

The rhodonea curve can also be given as

The curve has the parametric equations

See the figure for .

Generalized n-curving

[edit]

In the FTA C[0, 1] of curves, instead of e we shall take an arbitrary curve , a loop at 1. This is justified since

Then, for a curve γ in C[0, 1],

and

If , the mapping

given by

is the n-curving. We get the formula

Thus given any two loops and at 1, we get a transformation of curve

given by the above formula.

This we shall call generalized n-curving.

Example 1

[edit]

Let us take and as the unit circle ``u.’’ and as the cosine curve

Note that

For the transformed curve for , see the figure.

The transformed curve has the parametric equations

Example 2

[edit]

Denote the curve called Crooked Egg by whose polar equation is

Its parametric equations are

Let us take and

where is the unit circle.

The n-curved Archimedean spiral has the parametric equations

See the figures, the Crooked Egg and the transformed Spiral for .

References

[edit]
[edit]