Cyanobacteria are multicellular prokaryotes.
Fungi are multicellular eukaryotes.

An organism (from Ancient Greek ὄργανον (órganon) 'instrument, implement, tool', and Ancient Greek -ισμός (-ismós)) is any biological living system that functions as an individual life form.[1] All organisms are composed of cells (cell theory).[1] The idea of organism is based on the concept of minimal functional unit of life. Three traits have been proposed to play the main role in qualification as an organism:

Organisms include multicellular animals, plants, and fungi; or unicellular microorganisms such as protists, bacteria, and archaea.[5] All types of organisms are capable of reproduction, growth and development, maintenance, and some degree of response to stimuli. Most multicellular organisms differentiate into specialized tissues and organs during their development.

A unicellular organism may be either a prokaryote or a eukaryote. Prokaryotes are represented by two separate domains – bacteria and archaea. Eukaryotic organisms are characterized by the presence of a membrane-bound cell nucleus and contain additional membrane-bound compartments called organelles (such as mitochondria in animals and plants and plastids in plants and algae, all generally considered to be derived from endosymbiotic bacteria).[6] Fungi, animals and plants are examples of kingdoms of organisms within the eukaryotes.

Estimates on the number of Earth's current species range from 2 million to 1 trillion,[7] of which over 1.7 million have been documented.[8] More than 99% of all species, amounting to over five billion species,[9] that ever lived are estimated to be extinct.[10][11]

In 2016, a set of 355 genes from the last universal common ancestor (LUCA) of all organisms from Earth was identified.[12][13]

Etymology

The term "organism" (from Greek ὀργανισμός, organismos, from ὄργανον, organon, i.e. "instrument, implement, tool, organ of sense or apprehension")[14][15] first appeared in the English language in 1703 and took on its current definition by 1834 (Oxford English Dictionary). It is directly related to the term "organization". There is a long tradition of defining organisms as self-organizing beings, going back at least to Immanuel Kant's 1790 Critique of Judgment.[16]

Definitions

An organism may be defined as an assembly of molecules functioning as a more or less stable whole that exhibits the properties of life. Dictionary definitions can be broad, using phrases such as "any living structure, such as a plant, animal, fungus or bacterium, capable of growth and reproduction".[17] Many definitions exclude viruses and possible man-made non-organic life forms, as viruses are dependent on the biochemical machinery of a host cell for reproduction.[18] A superorganism is an organism consisting of many individuals working together as a single functional or social unit.[19]

There has been controversy about the best way to define the organism,[20] and from a philosophical point of view, whether such a definition is necessary.[21][22][23] Problematic cases include colonial organisms: for instance, a colony of eusocial insects fulfils criteria such as adaptive organisation and germ-soma specialisation.[24] If so, the same argument would include some mutualistic and sexual partnerships as organisms.[25] If group selection occurs, then a group could be viewed as a superorganism, optimised by group adaptation.[26] Another view is that attributes like autonomy, genetic homogeneity and genetic uniqueness should be examined separately rather than demanding that an organism should have all of them; if so, there are multiple dimensions to biological individuality, resulting in several types of organism.[27]

Other views include the idea that an individual is distinguished by its immune response, separating self from foreign;[28] that "anti-entropy", the ability to maintain order, is what distinguishes an organism;[29] or that Shannon's information theory can be used to identify organisms as capable of self-maintaining their information content.[4] Finally, it may be that the concept of the organism is inadequate in biology.[30]

Viruses

Main article: Non-cellular life

Viruses are not typically considered to be organisms because they are incapable of autonomous reproduction, growth or metabolism. Although some organisms are also incapable of independent survival and live as obligatory intracellular parasites, they are capable of independent metabolism and procreation. Although viruses have a few enzymes and molecules characteristic of living organisms, they have no metabolism of their own; they cannot synthesize and organize the organic compounds from which they are formed. Naturally, this rules out autonomous reproduction: they can only be passively replicated by the machinery of the host cell. In this sense, they are similar to inanimate matter.[31] Viruses have their own genes, and they evolve. Thus, an argument that viruses should be classed as living organisms is their ability to undergo evolution and replicate through self-assembly. However, some scientists argue that viruses neither evolve nor self-reproduce. Instead, viruses are evolved by their host cells, meaning that there was co-evolution of viruses and host cells. If host cells did not exist, viral evolution would be impossible. This is not true for cells. If viruses did not exist, the direction of cellular evolution could be different, but cells would nevertheless be able to evolve. As for reproduction, viruses rely on hosts' machinery to replicate. The discovery of viruses with genes coding for energy metabolism and protein synthesis fuelled the debate about whether viruses are living organisms. The presence of these genes suggested that viruses were once able to metabolize. However, it was found later that the genes coding for energy and protein metabolism have a cellular origin. Most likely, these genes were acquired through horizontal gene transfer from viral hosts.[31]

Structure

This section needs additional citations for verification. Please help improve this article by adding citations to reliable sources in this section. Unsourced material may be challenged and removed. (June 2023) (Learn how and when to remove this template message)
A eukaryotic cell (left) and prokaryotic cell (right). These are not to scale: a eukaryotic cell has some 10,000 times the volume of a prokaryote.
Size contrast of small cylindrical bacterial cells to large single-celled eukaryotic Paramecium.

All organisms consist of structural units called cells; some contain a single cell (unicellular) and others contain many units (multicellular). Multicellular organisms are able to specialize cells to perform specific functions. A group of such cells is a tissue, and in animals these occur as four basic types, namely epithelium, nervous tissue, muscle tissue, and connective tissue. Several types of tissue work together in the form of an organ to produce a particular function (such as the pumping of the blood by the heart, or as a barrier to the environment as the skin). This pattern continues to a higher level with several organs functioning as an organ system such as the reproductive system, and digestive system. Many multicellular organisms consist of several organ systems, which coordinate to allow for life.

Cell

The cell theory, first developed in 1839 by Matthias Jakob Schleiden and Theodor Schwann, states that all organisms are composed of one or more cells; all cells come from preexisting cells, and cells contain the hereditary information necessary for regulating cell functions and for transmitting information to the next generation of cells.

There are two types of cells, eukaryotic and prokaryotic. Prokaryotic cells are usually singletons, while eukaryotic cells are usually found in multicellular organisms. Prokaryotic cells lack a nuclear membrane so DNA is unbound within the cell; eukaryotic cells have nuclear membranes.

All cells, whether prokaryotic or eukaryotic, have a membrane, which envelops the cell, separates its interior from its environment, regulates what moves in and out, and maintains the electric potential of the cell. Inside the membrane, a salty cytoplasm takes up most of the cell volume. All cells possess DNA, the hereditary material of genes, and RNA, containing the information necessary to build various proteins such as enzymes, the cell's primary machinery. There are also other kinds of biomolecules in cells.

All cells share several similar characteristics of:[32]

Evolutionary history

See also: Origin of life, Earliest known life forms, and Common descent

Last universal common ancestor

Main article: Last universal common ancestor

Further information: Timeline of the evolutionary history of life

Precambrian stromatolites in the Siyeh Formation, Glacier National Park. In 2002, a paper in the scientific journal Nature suggested that these 3.5 Gya (billion years old) geological formations contain fossilized cyanobacteria microbes. This suggests they are evidence of one of the earliest known life forms on Earth.

The last universal common ancestor (LUCA) is the most recent organism from which all organisms now living on Earth descend.[33] Thus, it is the most recent common ancestor of all current life on Earth. The LUCA is estimated to have lived some 3.5 to 3.8 billion years ago (sometime in the Paleoarchean era).[34][35] The earliest evidence for life on Earth is graphite found to be biogenic in 3.7 billion-year-old metasedimentary rocks discovered in Western Greenland and microbial mat fossils found in 3.48 billion-year-old sandstone discovered in Western Australia.[36][37] Although more than 99 percent of all species that ever lived on the planet are estimated to be extinct,[10][11] it is likely that more than a billion species of life exist on Earth currently, with the highest estimates and projections reaching one trillion species.[7]

There is strong evidence from genetics that all organisms have a common ancestor. In particular, every living cell makes use of nucleic acids as its genetic material, and uses the same twenty amino acids as the building blocks for proteins. All organisms use the same genetic code (with some extremely rare and minor deviations) to translate nucleic acid sequences into proteins. The universality of these traits strongly suggests common ancestry, because the selection of many of these traits seems arbitrary. Horizontal gene transfer makes it more difficult to study the last universal ancestor.[38] However, the universal use of the same genetic code, same nucleotides, and same amino acids makes the existence of such an ancestor overwhelmingly likely.[33] The first organisms were possibly anaerobic and thermophilic chemolithoautotrophs that evolved within inorganic compartments at geothermal environments.[39][40]

The most commonly accepted location of the root of the tree of life is between a monophyletic domain Bacteria and a clade formed by Archaea and Eukaryota of what is referred to as the "traditional tree of life" based on several molecular studies.[41] In 2016, William F. Martin genetically analyzed 6.1 million protein-coding genes from sequenced prokaryotic genomes of various phylogenetic trees and identified 355 protein clusters from amongst 286,514 protein clusters that were probably common to the LUCA. The results "depict LUCA as anaerobic, CO2-fixing, H2-dependent with a Wood–Ljungdahl pathway (the reductive acetyl-coenzyme A pathway), N2-fixing and thermophilic. LUCA's biochemistry was replete with FeS clusters and radical reaction mechanisms. Its cofactors reveal dependence upon transition metals, flavins, S-adenosyl methionine, coenzyme A, ferredoxin, molybdopterin, corrins and selenium. Its genetic code required nucleoside modifications and S-adenosylmethionine-dependent methylations." This depicts methanogenic clostria as a basal clade in the 355 lineages examined, and suggest that the LUCA inhabited an anaerobic hydrothermal vent setting in a geochemically active environment rich in H2, CO2, and iron.[12] However, the presence of these genes in LUCA could also represent later horizontal gene transfers between archaea and bacteria.[42]

Reproduction

Main article: Reproduction

Sexual reproduction is widespread among current eukaryotes, and was likely present in the last common ancestor.[43] This is suggested by the finding of a core set of genes for meiosis in the descendants of lineages that diverged early from the eukaryotic evolutionary tree.[44] and Malik et al.[45] It is further supported by evidence that eukaryotes previously regarded as "ancient asexuals", such as Amoeba, were likely sexual in the past, and that most present day asexual amoeboid lineages likely arose recently and independently.[46]

In prokaryotes, natural bacterial transformation involves the transfer of DNA from one bacterium to another and integration of the donor DNA into the recipient chromosome by recombination. Natural bacterial transformation is considered to be a primitive sexual process and occurs in both bacteria and archaea, although it has been studied mainly in bacteria. Transformation is clearly a bacterial adaptation and not an accidental occurrence, because it depends on numerous gene products that specifically interact with each other to enter a state of natural competence to perform this complex process.[47] Transformation is a common mode of DNA transfer among prokaryotes.[48]

Human intervention

Modern biotechnology is challenging traditional concepts of organisms and species. Cloning is the process of creating a new multicellular organism, genetically identical to another, with the potential of creating entirely new species of organisms. Cloning is the subject of much ethical debate.

In 2008, the J. Craig Venter Institute assembled a synthetic bacterial genome, Mycoplasma genitalium, by using recombination in yeast of 25 overlapping DNA fragments in a single step. The use of yeast recombination greatly simplifies the assembly of large DNA molecules from both synthetic and natural fragments.[49] Other companies, such as Synthetic Genomics, have already been formed to take advantage of the many commercial uses of custom designed genomes.

See also

References

  1. ^ a b Mosby's Dictionary of Medicine, Nursing and Health Professions (10th ed.). St. Louis, Missouri: Elsevier. 2017. p. 1281. ISBN 978-0-3232-2205-1.
  2. ^ Rosen, Robert (September 1958). "A relational theory of biological systems". The Bulletin of Mathematical Biophysics. 20 (3): 245–260. doi:10.1007/BF02478302. ISSN 0007-4985.
  3. ^ Santelices, Bernabé (April 1999). "How many kinds of individual are there?". Trends in Ecology & Evolution. 14 (4): 152–155. doi:10.1016/S0169-5347(98)01519-5. PMID 10322523.
  4. ^ a b Piast, Radosław W. (June 2019). "Shannon's information, Bernal's biopoiesis and Bernoulli distribution as pillars for building a definition of life". Journal of Theoretical Biology. 470: 101–107. Bibcode:2019JThBi.470..101P. doi:10.1016/j.jtbi.2019.03.009. PMID 30876803. S2CID 80625250.
  5. ^ Hine, R.S. (2008). A dictionary of biology (6th ed.). Oxford: Oxford University Press. p. 461. ISBN 978-0-19-920462-5.
  6. ^ Cavalier-Smith, Thomas (1987). "The origin of eukaryotic and archaebacterial cells". Annals of the New York Academy of Sciences. 503 (1): 17–54. Bibcode:1987NYASA.503...17C. doi:10.1111/j.1749-6632.1987.tb40596.x. PMID 3113314. S2CID 38405158.
  7. ^ a b Larsen, Brendan B.; Miller, Elizabeth C.; Rhodes, Matthew K.; Wiens, John J. (2017). "Inordinate Fondness Multiplied and Redistributed: the Number of Species on Earth and the New Pie of Life". The Quarterly Review of Biology. University of Chicago Press. 92 (3): 229–265. doi:10.1086/693564. ISSN 0033-5770.
  8. ^ Anderson, A.M. (2018). "Describing the Undiscovered". Chironomus: Journal of Chironomidae Research (31): 2–3. doi:10.5324/cjcr.v0i31.2887.
  9. ^ McKinney, Michael L. (1996). "How do rare species avoid extinction? A paleontological view". In Kunin, W.E.; Gaston, Kevin (eds.). The Biology of Rarity: Causes and consequences of rare – common differences. ISBN 978-0-412-63380-5. Retrieved 26 May 2015.
  10. ^ a b Stearns, Beverly Peterson; Stearns, Stephen C. (2000). Watching, from the Edge of Extinction. Yale University Press. p. preface x. ISBN 978-0-300-08469-6. Retrieved 30 May 2017.
  11. ^ a b Novacek, M.J. (8 November 2014). "Prehistory's Brilliant Future". New York Times. Retrieved 25 December 2014.
  12. ^ a b Weiss, Madeline C.; Sousa, Filipa L.; Mrnjavac, Natalia; et al. (July 2016). "The physiology and habitat of the last universal common ancestor". Nature Microbiology. 1 (9): 16116. doi:10.1038/nmicrobiol.2016.116. PMID 27562259. S2CID 2997255.
  13. ^ Wade, Nicholas (25 July 2016). "Meet Luca, the Ancestor of All Living Things". The New York Times. Retrieved 25 July 2016.
  14. ^ ὄργανον. Liddell, Henry George; Scott, Robert; A Greek–English Lexicon at the Perseus Project
  15. ^ "organism". Online Etymology Dictionary. Retrieved 2 June 2023.
  16. ^ Kant I., Critique of Judgment: §64.
  17. ^ "organism". Chambers 21st Century Dictionary (online ed.). 1999.
  18. ^ "organism". Oxford English Dictionary (Online ed.). Oxford University Press. 2004. (Subscription or participating institution membership required.)
  19. ^ Kelly, Kevin (1994). Out of control: the new biology of machines, social systems and the economic world. Boston: Addison-Wesley. pp. 98. ISBN 978-0-201-48340-6.
  20. ^ Clarke, E. (2010). "The problem of biological individuality". Biological Theory. 5 (4): 312–325. doi:10.1162/BIOT_a_00068. S2CID 28501709.
  21. ^ Pepper, J.W.; Herron, M.D. (November 2008). "Does biology need an organism concept?". Biological Reviews of the Cambridge Philosophical Society. 83 (4): 621–627. doi:10.1111/j.1469-185X.2008.00057.x. PMID 18947335. S2CID 4942890.
  22. ^ Wilson, R. (2007). "The biological notion of individual". Stanford Encyclopedia of Philosophy.
  23. ^ Wilson, J. (2000). "Ontological butchery: organism concepts and biological generalizations". Philosophy of Science. 67: 301–311. doi:10.1086/392827. JSTOR 188676. S2CID 84168536.
  24. ^ Folse III, H.J.; Roughgarden, J. (December 2010). "What is an individual organism? A multilevel selection perspective". The Quarterly Review of Biology. 85 (4): 447–472. doi:10.1086/656905. PMID 21243964. S2CID 19816447.
  25. ^ Queller, D.C.; Strassmann, J.E. (November 2009). "Beyond society: the evolution of organismality". Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences. 364 (1533): 3143–3155. doi:10.1098/rstb.2009.0095. PMC 2781869. PMID 19805423.
  26. ^ Gardner, A.; Grafen, A. (April 2009). "Capturing the superorganism: a formal theory of group adaptation". Journal of Evolutionary Biology. 22 (4): 659–671. doi:10.1111/j.1420-9101.2008.01681.x. PMID 19210588. S2CID 8413751.
  27. ^ Santelices, B. (April 1999). "How many kinds of individual are there?". Trends in Ecology & Evolution. 14 (4): 152–155. doi:10.1016/s0169-5347(98)01519-5. PMID 10322523.
  28. ^ Pradeu, T. (2010). "What is an organism? An immunological answer". History and Philosophy of the Life Sciences. 32 (2–3): 247–267. PMID 21162370.
  29. ^ Longo, G.; Montévil, M. (2014). Perspectives on Organisms – Springer. Lecture Notes in Morphogenesis. doi:10.1007/978-3-642-35938-5. ISBN 978-3-642-35937-8. S2CID 27653540.
  30. ^ Bateson, P. (February 2005). "The return of the whole organism". Journal of Biosciences. 30 (1): 31–39. doi:10.1007/BF02705148. PMID 15824439. S2CID 26656790.
  31. ^ a b Moreira, D.; López-García, P.N. (April 2009). "Ten reasons to exclude viruses from the tree of life". Nature Reviews. Microbiology. 7 (4): 306–311. doi:10.1038/nrmicro2108. PMID 19270719. S2CID 3907750.
  32. ^ Alberts, Bruce, ed. (2002). "Chapter 1: The Universal Features of Cells on Earth". Molecular Biology of the Cell (4th ed.). New York: Garland Science. ISBN 978-0-8153-3218-3.
  33. ^ a b Theobald, D.L. (May 2010). "A formal test of the theory of universal common ancestry". Nature. 465 (7295): 219–222. Bibcode:2010Natur.465..219T. doi:10.1038/nature09014. PMID 20463738. S2CID 4422345.
  34. ^ Doolittle, W.F. (February 2000). "Uprooting the tree of life" (PDF). Scientific American. 282 (2): 90–95. Bibcode:2000SciAm.282b..90D. doi:10.1038/scientificamerican0200-90. PMID 10710791. Archived from the original (PDF) on 15 July 2011.
  35. ^ Glansdorff, N.; Xu, Y; Labedan, B. (July 2008). "The last universal common ancestor: emergence, constitution and genetic legacy of an elusive forerunner". Biology Direct. 3: 29. doi:10.1186/1745-6150-3-29. PMC 2478661. PMID 18613974.
  36. ^ Borenstein, S. (13 November 2013). "Oldest fossil found: Meet your microbial mom". AP News. Retrieved 15 November 2013.
  37. ^ Noffke, Nora; Christian, Daniel; Wacey, David; Hazen, Robert M. (December 2013). "Microbially induced sedimentary structures recording an ancient ecosystem in the ca. 3.48 billion-year-old Dresser Formation, Pilbara, Western Australia". Astrobiology. 13 (12): 1103–1124. Bibcode:2013AsBio..13.1103N. doi:10.1089/ast.2013.1030. PMC 3870916. PMID 24205812.
  38. ^ Doolittle, W.F. (February 2000). "Uprooting the tree of life" (PDF). Scientific American. 282 (2): 90–95. Bibcode:2000SciAm.282b..90D. doi:10.1038/scientificamerican0200-90. PMID 10710791. Archived from the original (PDF) on 7 September 2006.
  39. ^ Weiss, Madeline C.; Sousa, Filipa L.; Mrnjavac, Natalia; Neukirchen, Sinje; Roettger, Mayo; Nelson-Sathi, Shijulal; Martin, William F. (August 2018). "The last universal common ancestor between ancient Earth chemistry and the onset of genetics". PLOS Genetics. 14 (8): e1007518. doi:10.1371/journal.pgen.1007518. PMC 6095482. PMID 30114187.
  40. ^ Koonin, Eugene V.; Martin, William (December 2005). "On the origin of genomes and cells within inorganic compartments". Trends in Genetics. 21 (12): 647–654. doi:10.1016/j.tig.2005.09.006. PMC 7172762. PMID 16223546.
  41. ^ Brown, J.R.; Doolittle, W.F. (March 1995). "Root of the universal tree of life based on ancient aminoacyl-tRNA synthetase gene duplications". Proceedings of the National Academy of Sciences of the United States of America. 92 (7): 2441–2445. Bibcode:1995PNAS...92.2441B. doi:10.1073/pnas.92.7.2441. PMC 42233. PMID 7708661.
  42. ^ Gogarten, J.P.; Deamer, D. (November 2016). "Is LUCA a thermophilic progenote?". Nature Microbiology. 1 (12): 16229. doi:10.1038/nmicrobiol.2016.229. PMID 27886195. S2CID 205428194.
  43. ^ Dacks, J.; Roger, A.J. (June 1999). "The first sexual lineage and the relevance of facultative sex". Journal of Molecular Evolution. 48 (6): 779–783. Bibcode:1999JMolE..48..779D. doi:10.1007/PL00013156. PMID 10229582. S2CID 9441768.
  44. ^ Ramesh, M.A.; Malik, S.B.; Logsdon, J.M. (January 2005). "A phylogenomic inventory of meiotic genes; evidence for sex in Giardia and an early eukaryotic origin of meiosis". Current Biology. 15 (2): 185–191. doi:10.1016/j.cub.2005.01.003. PMID 15668177. S2CID 17013247.
  45. ^ Malik, S.B.; Pightling, A.W.; Stefaniak, L.M.; Schurko, A.M.; Logsdon, J.M. (August 2007). "An expanded inventory of conserved meiotic genes provides evidence for sex in Trichomonas vaginalis". PLOS ONE. 3 (8): e2879. Bibcode:2008PLoSO...3.2879M. doi:10.1371/journal.pone.0002879. PMC 2488364. PMID 18663385.
  46. ^ Lahr, D.J.; Parfrey, L.W.; Mitchell, E.A.; Katz, L.A.; Lara, E. (July 2011). "The chastity of amoebae: re-evaluating evidence for sex in amoeboid organisms". Proceedings. Biological Sciences. 278 (1715): 2081–2090. doi:10.1098/rspb.2011.0289. PMC 3107637. PMID 21429931.
  47. ^ Chen, I; Dubnau, D. (March 2004). "DNA uptake during bacterial transformation". Nature Reviews. Microbiology. 2 (3): 241–249. doi:10.1038/nrmicro844. PMID 15083159. S2CID 205499369.
  48. ^ Johnsborg, O.; Eldholm, V. (December 2007). "Natural genetic transformation: prevalence, mechanisms and function". Research in Microbiology. 158 (10): 767–778. doi:10.1016/j.resmic.2007.09.004. PMID 17997281.
  49. ^ Gibson, Daniel G.; Benders, Gwynedd A.; Axelroda, Kevin C. (December 2008). "One-step assembly in yeast of 25 overlapping DNA fragments to form a complete synthetic Mycoplasma genitalium genome". Proceedings of the National Academy of Sciences of the United States of America. 105 (51): 20404–20409. Bibcode:2008PNAS..10520404G. doi:10.1073/pnas.0811011106. PMC 2600582. PMID 19073939.