This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) The topic of this article may not meet Wikipedia's general notability guideline. Please help to demonstrate the notability of the topic by citing reliable secondary sources that are independent of the topic and provide significant coverage of it beyond a mere trivial mention. If notability cannot be shown, the article is likely to be merged, redirected, or deleted.Find sources: "Programming with Big Data in R" – news · newspapers · books · scholar · JSTOR (June 2013) (Learn how and when to remove this template message) A major contributor to this article appears to have a close connection with its subject. It may require cleanup to comply with Wikipedia's content policies, particularly neutral point of view. Please discuss further on the talk page. (June 2013) (Learn how and when to remove this template message) (Learn how and when to remove this template message)
bdrp
ParadigmSPMD and MPMD
Designed byWei-Chen Chen, George Ostrouchov, Pragneshkumar Patel, and Drew Schmidt
DeveloperpbdR Core Team
First appearedSeptember 2012; 11 years ago (2012-09)
Preview release
Through GitHub at RBigData
Typing disciplineDynamic
OSCross-platform
LicenseGeneral Public License and Mozilla Public License
Websitewww.r-pbd.org
Influenced by
R, C, Fortran, MPI, and ØMQ

Programming with Big Data in R (pbdR)[1] is a series of R packages and an environment for statistical computing with big data by using high-performance statistical computation.[2][3] The pbdR uses the same programming language as R with S3/S4 classes and methods which is used among statisticians and data miners for developing statistical software. The significant difference between pbdR and R code is that pbdR mainly focuses on distributed memory systems, where data are distributed across several processors and analyzed in a batch mode, while communications between processors are based on MPI that is easily used in large high-performance computing (HPC) systems. R system mainly focuses[citation needed] on single multi-core machines for data analysis via an interactive mode such as GUI interface.

Two main implementations in R using MPI are Rmpi[4] and pbdMPI of pbdR.

The idea of SPMD parallelism is to let every processor do the same amount of work, but on different parts of a large data set. For example, a modern GPU is a large collection of slower co-processors that can simply apply the same computation on different parts of relatively smaller data, but the SPMD parallelism ends up with an efficient way to obtain final solutions (i.e. time to solution is shorter).[5]

Package design

Programming with pbdR requires usage of various packages developed by pbdR core team. Packages developed are the following.

General I/O Computation Application Profiling Client/Server
pbdDEMO pbdNCDF4 pbdDMAT pmclust pbdPROF pbdZMQ
pbdMPI pbdADIOS pbdBASE pbdML pbdPAPI remoter
pbdSLAP hpcvis pbdCS
kazaam pbdRPC
The images describes how various pbdr packages are correlated.

Among these packages, pbdMPI provides wrapper functions to MPI library, and it also produces a shared library and a configuration file for MPI environments. All other packages rely on this configuration for installation and library loading that avoids difficulty of library linking and compiling. All other packages can directly use MPI functions easily.

Among those packages, the pbdDEMO package is a collection of 20+ package demos which offer example uses of the various pbdR packages, and contains a vignette that offers detailed explanations for the demos and provides some mathematical or statistical insight.

Examples

Example 1

Hello World! Save the following code in a file called "demo.r"

### Initial MPI
library(pbdMPI, quiet = TRUE)
init()

comm.cat("Hello World!\n")

### Finish
finalize()

and use the command

mpiexec -np 2 Rscript demo.r

to execute the code where Rscript is one of command line executable program.

Example 2

The following example modified from pbdMPI illustrates the basic syntax of the language of pbdR. Since pbdR is designed in SPMD, all the R scripts are stored in files and executed from the command line via mpiexec, mpirun, etc. Save the following code in a file called "demo.r"

### Initial MPI
library(pbdMPI, quiet = TRUE)
init()
.comm.size <- comm.size()
.comm.rank <- comm.rank()

### Set a vector x on all processors with different values
N <- 5
x <- (1:N) + N * .comm.rank

### All reduce x using summation operation
y <- allreduce(as.integer(x), op = "sum")
comm.print(y)
y <- allreduce(as.double(x), op = "sum")
comm.print(y)

### Finish
finalize()

and use the command

mpiexec -np 4 Rscript demo.r

to execute the code where Rscript is one of command line executable program.

Example 3

The following example modified from pbdDEMO illustrates the basic ddmatrix computation of pbdR which performs singular value decomposition on a given matrix. Save the following code in a file called "demo.r"

# Initialize process grid
library(pbdDMAT, quiet=T)
if(comm.size() != 2)
  comm.stop("Exactly 2 processors are required for this demo.")
init.grid()

# Setup for the remainder
comm.set.seed(diff=TRUE)
M <- N <- 16
BL <- 2 # blocking --- passing single value BL assumes BLxBL blocking
dA <- ddmatrix("rnorm", nrow=M, ncol=N, mean=100, sd=10)

# LA SVD
svd1 <- La.svd(dA)
comm.print(svd1$d)

# Finish
finalize()

and use the command

mpiexec -np 2 Rscript demo.r

to execute the code where Rscript is one of command line executable program.

Further reading

References

  1. ^ Ostrouchov, G., Chen, W.-C., Schmidt, D., Patel, P. (2012). "Programming with Big Data in R".((cite web)): CS1 maint: multiple names: authors list (link)
  2. ^ Chen, W.-C. & Ostrouchov, G. (2011). "HPSC -- High Performance Statistical Computing for Data Intensive Research". Archived from the original on 2013-07-19. Retrieved 2013-06-25.
  3. ^ "Basic Tutorials for R to Start Analyzing Data". 3 November 2022.
  4. ^ a b Yu, H. (2002). "Rmpi: Parallel Statistical Computing in R". R News.
  5. ^ Mike Houston. "Folding@Home - GPGPU". Retrieved 2007-10-04.
  6. ^ "100 most read R posts in 2012 (stats from R-bloggers) – big data, visualization, data manipulation, and other languages".