This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (May 2015) (Learn how and when to remove this template message)

In mathematics, a full subcategory A of a category B is said to be reflective in B when the inclusion functor from A to B has a left adjoint.[1]: 91  This adjoint is sometimes called a reflector, or localization.[2] Dually, A is said to be coreflective in B when the inclusion functor has a right adjoint.

Informally, a reflector acts as a kind of completion operation. It adds in any "missing" pieces of the structure in such a way that reflecting it again has no further effect.

Definition

A full subcategory A of a category B is said to be reflective in B if for each B-object B there exists an A-object and a B-morphism such that for each B-morphism to an A-object there exists a unique A-morphism with .

The pair is called the A-reflection of B. The morphism is called the A-reflection arrow. (Although often, for the sake of brevity, we speak about only as being the A-reflection of B).

This is equivalent to saying that the embedding functor is a right adjoint. The left adjoint functor is called the reflector. The map is the unit of this adjunction.

The reflector assigns to the A-object and for a B-morphism is determined by the commuting diagram

If all A-reflection arrows are (extremal) epimorphisms, then the subcategory A is said to be (extremal) epireflective. Similarly, it is bireflective if all reflection arrows are bimorphisms.

All these notions are special case of the common generalization—-reflective subcategory, where is a class of morphisms.

The -reflective hull of a class A of objects is defined as the smallest -reflective subcategory containing A. Thus we can speak about reflective hull, epireflective hull, extremal epireflective hull, etc.

An anti-reflective subcategory is a full subcategory A such that the only objects of B that have an A-reflection arrow are those that are already in A.[citation needed]

Dual notions to the above-mentioned notions are coreflection, coreflection arrow, (mono)coreflective subcategory, coreflective hull, anti-coreflective subcategory.

Examples

Algebra

Topology

Functional analysis

Category theory

Properties

This section needs expansion. You can help by adding to it. (April 2019)

Notes

  1. ^ a b c Mac Lane, Saunders, 1909-2005. (1998). Categories for the working mathematician (2nd ed.). New York: Springer. p. 89. ISBN 0387984038. OCLC 37928530.((cite book)): CS1 maint: multiple names: authors list (link) CS1 maint: numeric names: authors list (link)
  2. ^ a b c d e f Riehl, Emily (2017-03-09). Category theory in context. Mineola, New York. p. 140. ISBN 9780486820804. OCLC 976394474.((cite book)): CS1 maint: location missing publisher (link)
  3. ^ Lawson (1998), p. 63, Theorem 2.
  4. ^ "coreflective subcategory in nLab". ncatlab.org. Retrieved 2019-04-02.

References