Structure-preserving function between two rings
In mathematics, a ring homomorphism is a structure-preserving function between two rings. More explicitly, if R and S are rings, then a ring homomorphism is a function that preserves addition, multiplication and multiplicative identity; that is,
for all in
These conditions imply that additive inverses and the additive identity are preserved too.
If in addition f is a bijection, then its inverse f−1 is also a ring homomorphism. In this case, f is called a ring isomorphism, and the rings R and S are called isomorphic. From the standpoint of ring theory, isomorphic rings have exactly the same properties.
If R and S are rngs, then the corresponding notion is that of a rng homomorphism,[a] defined as above except without the third condition f(1R) = 1S. A rng homomorphism between (unital) rings need not be a ring homomorphism.
The composition of two ring homomorphisms is a ring homomorphism. It follows that the rings forms a category with ring homomorphisms as morphisms (see Category of rings).
In particular, one obtains the notions of ring endomorphism, ring isomorphism, and ring automorphism.
Properties
Let f : R → S be a ring homomorphism. Then, directly from these definitions, one can deduce:
- f(0R) = 0S.
- f(−a) = −f(a) for all a in R.
- For any unit a in R, f(a) is a unit element such that f(a)−1 = f(a−1) . In particular, f induces a group homomorphism from the (multiplicative) group of units of R to the (multiplicative) group of units of S (or of im(f)).
- The image of f, denoted im(f), is a subring of S.
- The kernel of f, defined as ker(f) = {a in R | f(a) = 0S}, is a two-sided ideal in R. Every two-sided ideal in a ring R is the kernel of some ring homomorphism.
- An homomorphism is injective if and only if kernel is the zero ideal.
- The characteristic of S divides the characteristic of R. This can sometimes be used to show that between certain rings R and S, no ring homomorphism R → S exists.
- If Rp is the smallest subring contained in R and Sp is the smallest subring contained in S, then every ring homomorphism f : R → S induces a ring homomorphism fp : Rp → Sp.
- If R is a field (or more generally a skew-field) and S is not the zero ring, then f is injective.
- If both R and S are fields, then im(f) is a subfield of S, so S can be viewed as a field extension of R.
- If I is an ideal of S then f−1(I) is an ideal of R.
- If R and S are commutative and P is a prime ideal of S then f−1(P) is a prime ideal of R.
- If R and S are commutative, M is a maximal ideal of S, and f is surjective, then f−1(M) is a maximal ideal of R.
- If R and S are commutative and S is an integral domain, then ker(f) is a prime ideal of R.
- If R and S are commutative, S is a field, and f is surjective, then ker(f) is a maximal ideal of R.
- If f is surjective, P is prime (maximal) ideal in R and ker(f) ⊆ P, then f(P) is prime (maximal) ideal in S.
Moreover,
- The composition of ring homomorphisms S → T and R → S is a ring homomorphism R → T.
- For each ring R, the identity map R → R is a ring homomorphism.
- Therefore, the class of all rings together with ring homomorphisms forms a category, the category of rings.
- The zero map R → S that sends every element of R to 0 is a ring homomorphism only if S is the zero ring (the ring whose only element is zero).
- For every ring R, there is a unique ring homomorphism Z → R. This says that the ring of integers is an initial object in the category of rings.
- For every ring R, there is a unique ring homomorphism from R to the zero ring. This says that the zero ring is a terminal object in the category of rings.
- As the initial object is not isomorphic to the terminal object, there is no zero object in the category of rings; in particular, the zero ring is not a zero object in the category of rings.
Category of rings
Endomorphisms, isomorphisms, and automorphisms
- A ring endomorphism is a ring homomorphism from a ring to itself.
- A ring isomorphism is a ring homomorphism having a 2-sided inverse that is also a ring homomorphism. One can prove that a ring homomorphism is an isomorphism if and only if it is bijective as a function on the underlying sets. If there exists a ring isomorphism between two rings R and S, then R and S are called isomorphic. Isomorphic rings differ only by a relabeling of elements. Example: Up to isomorphism, there are four rings of order 4. (This means that there are four pairwise non-isomorphic rings of order 4 such that every other ring of order 4 is isomorphic to one of them.) On the other hand, up to isomorphism, there are eleven rngs of order 4.
- A ring automorphism is a ring isomorphism from a ring to itself.
Monomorphisms and epimorphisms
Injective ring homomorphisms are identical to monomorphisms in the category of rings: If f : R → S is a monomorphism that is not injective, then it sends some r1 and r2 to the same element of S. Consider the two maps g1 and g2 from Z[x] to R that map x to r1 and r2, respectively; f ∘ g1 and f ∘ g2 are identical, but since f is a monomorphism this is impossible.
However, surjective ring homomorphisms are vastly different from epimorphisms in the category of rings. For example, the inclusion Z ⊆ Q is a ring epimorphism, but not a surjection. However, they are exactly the same as the strong epimorphisms.