Formally, a unique factorization domain is defined to be an integral domainR in which every non-zero element x of R can be written as a product of a unitu and zero or more irreducible elementspi of R:
x = up1p2 ⋅⋅⋅ pn with n ≥ 0
and this representation is unique in the following sense:
If q1, ..., qm are irreducible elements of R and w is a unit such that
x = wq1q2 ⋅⋅⋅ qm with m ≥ 0,
then m = n, and there exists a bijective mapφ : {1, ..., n} → {1, ..., m} such that pi is associated to qφ(i) for i ∈ {1, ..., n}.
Examples
Most rings familiar from elementary mathematics are UFDs:
If R is a UFD, then so is R[X], the ring of polynomials with coefficients in R. Unless R is a field, R[X] is not a principal ideal domain. By induction, a polynomial ring in any number of variables over any UFD (and in particular over a field or over the integers) is a UFD.
The formal power series ring K[[X1, ..., Xn]] over a field K (or more generally over a regular UFD such as a PID) is a UFD. On the other hand, the formal power series ring over a UFD need not be a UFD, even if the UFD is local. For example, if R is the localization of k[x, y, z]/(x2 + y3 + z7) at the prime ideal(x, y, z) then R is a local ring that is a UFD, but the formal power series ring R[[X]] over R is not a UFD.
is a UFD for all integers 1 ≤ n ≤ 22, but not for n = 23.
Mori showed that if the completion of a Zariski ring, such as a Noetherian local ring, is a UFD, then the ring is a UFD.[1] The converse of this is not true: there are Noetherian local rings that are UFDs but whose completions are not. The question of when this happens is rather subtle: for example, for the localization of k[x, y, z]/(x2 + y3 + z5) at the prime ideal (x, y, z), both the local ring and its completion are UFDs, but in the apparently similar example of the localization of k[x, y, z]/(x2 + y3 + z7) at the prime ideal (x, y, z) the local ring is a UFD but its completion is not.
Let be a field of any characteristic other than 2. Klein and Nagata showed that the ring R[X1, ..., Xn]/Q is a UFD whenever Q is a nonsingular quadratic form in the Xs and n is at least 5. When n = 4, the ring need not be a UFD. For example, R[X, Y, Z, W]/(XY − ZW) is not a UFD, because the element XY equals the element ZW so that XY and ZW are two different factorizations of the same element into irreducibles.
The ring Q[x, y]/(x2 + 2y2 + 1) is a UFD, but the ring Q(i)[x, y]/(x2 + 2y2 + 1) is not. On the other hand, The ring Q[x, y]/(x2 + y2 − 1) is not a UFD, but the ring Q(i)[x, y]/(x2 + y2 − 1) is.[2] Similarly the coordinate ringR[X, Y, Z]/(X2 + Y2 + Z2 − 1) of the 2-dimensional real sphere is a UFD, but the coordinate ring C[X, Y, Z]/(X2 + Y2 + Z2 − 1) of the complex sphere is not.
Suppose that the variables Xi are given weights wi, and F(X1, ..., Xn) is a homogeneous polynomial of weight w. Then if c is coprime to w and R is a UFD and either every finitely generated projective module over R is free or c is 1 mod w, the ring R[X1, ..., Xn, Z]/(Zc − F(X1, ..., Xn)) is a UFD.[3]
Non-examples
The quadratic integer ring of all complex numbers of the form , where a and b are integers, is not a UFD because 6 factors as both 2×3 and as . These truly are different factorizations, because the only units in this ring are 1 and −1; thus, none of 2, 3, , and are associate. It is not hard to show that all four factors are irreducible as well, though this may not be obvious.[4] See also Algebraic integer.
The ring of formal power series over the complex numbers is a UFD, but the subring of those that converge everywhere, in other words the ring of entire functions in a single complex variable, is not a UFD, since there exist entire functions with an infinity of zeros, and thus an infinity of irreducible factors, while a UFD factorization must be finite, e.g.:
Properties
Some concepts defined for integers can be generalized to UFDs:
In UFDs, every irreducible element is prime. (In any integral domain, every prime element is irreducible, but the converse does not always hold. For instance, the element z ∈ K[x, y, z]/(z2 − xy) is irreducible, but not prime.) Note that this has a partial converse: a domain satisfying the ACCP is a UFD if and only if every irreducible element is prime.
Any two elements of a UFD have a greatest common divisor and a least common multiple. Here, a greatest common divisor of a and b is an element d that divides both a and b, and such that every other common divisor of a and b divides d. All greatest common divisors of a and b are associated.
A has a divisor theory in which every divisor is principal.
A is a Krull domain in which every divisorial ideal is principal (in fact, this is the definition of UFD in Bourbaki.)
A is a Krull domain and every prime ideal of height 1 is principal.[7]
In practice, (2) and (3) are the most useful conditions to check. For example, it follows immediately from (2) that a PID is a UFD, since every prime ideal is generated by a prime element in a PID.
For another example, consider a Noetherian integral domain in which every height one prime ideal is principal. Since every prime ideal has finite height, it contains a height one prime ideal (induction on height) that is principal. By (2), the ring is a UFD.
^A Schreier domain is an integrally closed integral domain where, whenever x divides yz, x can be written as x = x1x2 so that x1 divides y and x2 divides z. In particular, a GCD domain is a Schreier domain