Algebraic structure → Ring theory Ring theory |
---|
![]() |
In mathematics, a subring of R is a subset of a ring that is itself a ring when binary operations of addition and multiplication on R are restricted to the subset, and which shares the same multiplicative identity as R. For those who define rings without requiring the existence of a multiplicative identity, a subring of R is just a subset of R that is a ring for the operations of R (this does imply it contains the additive identity of R). The latter gives a strictly weaker condition, even for rings that do have a multiplicative identity, so that for instance all ideals become subrings (and they may have a multiplicative identity that differs from the one of R). With definition requiring a multiplicative identity (which is used in this article), the only ideal of R that is a subring of R is R itself.
A subring of a ring (R, +, ∗, 0, 1) is a subset S of R that preserves the structure of the ring, i.e. a ring (S, +, ∗, 0, 1) with S ⊆ R. Equivalently, it is both a subgroup of (R, +, 0) and a submonoid of (R, ∗, 1).
The ring and its quotients have no subrings (with multiplicative identity) other than the full ring.[1]: 228
Every ring has a unique smallest subring, isomorphic to some ring with n a nonnegative integer (see characteristic). The integers correspond to n = 0 in this statement, since is isomorphic to .[2]: 89–90
The subring test is a theorem that states that for any ring R, a subset S of R is a subring if and only if it is closed under multiplication and subtraction, and contains the multiplicative identity of R.[1]: 228
As an example, the ring Z of integers is a subring of the field of real numbers and also a subring of the ring of polynomials Z[X].
Not to be confused with a ring-theoretic analog of a group extension. For that meaning, see an old version of the article Idealization of a module. |
If S is a subring of a ring R, then equivalently R is said to be a ring extension of S, written as R/S in similar notation to that for field extensions.
Let R be a ring. Any intersection of subrings of R is again a subring of R. Therefore, if X is any subset of R, the intersection of all subrings of R containing X is a subring S of R. S is the smallest subring of R containing X. ("Smallest" means that if T is any other subring of R containing X, then S is contained in T.) S is said to be the subring of R generated by X. If S = R, we may say that the ring R is generated by X.
Proper ideals are subrings (without unity) that are closed under both left and right multiplication by elements of R.
If one omits the requirement that rings have a unity element, then subrings need only be non-empty and otherwise conform to the ring structure, and ideals become subrings. Ideals may or may not have their own multiplicative identity (distinct from the identity of the ring):
A ring may be profiled[clarification needed] by the variety of commutative subrings that it hosts: