Cet article est une ébauche concernant l’écologie scientifique.

Vous pouvez partager vos connaissances en l’améliorant (comment ?) selon les recommandations des projets correspondants.

Exemple de couronne hélicoïdale captant les particules nourricières chez un annélidé de l'ordre des Canalipalpata.
Outre le Spondylus dont la coquille ouverte laisse apercevoir un manteau coloré, la plupart des animaux (coraux, ascidies, éponges) visibles sur cette photo sont des organismes filtreurs.
Barentsa discreta, un petit animal filtreur du phyllum des Entoprocta.
Chez la crevette bambou, ce sont les soies des pattes qui lui servent à filtrer les particules en suspension dans l'eau.
Le krill s'alimente efficacement de particules (microalgues surtout), au moyen d'un organe formant une sorte de « panier » qu'il utilise pour accumuler le phytoplancton filtré dans l'eau.
(animation ralentie 12 fois).
Banc de « maquereaux indiens » (Rastrelliger kanagurta) filtreurs planctonivores (ici en Égypte).
Système de rétraction permettant à certains filtreurs de se protéger de leurs prédateurs en s'enfouissant presque instantanément dans le sédiment.
Fossile de Liospiriferina rostrata (synonyme de Spiriferina rostrata) ; ces animaux Brachiopodes filtraient le plancton marin grâce à un organe spécialisé (le lophophore, dont on voit encore ici - ce qui est exceptionnel - le squelette silicifié). Ce spécimen ayant vécu au Jurassique inférieur a été trouvé dans le Pliensbachien (daté de -189,6 ± 1,5 et -183,0 ± 1,5 million d'années).
Comparaison de deux becs de canards, dont le second (celui du bas ; Anas platyrhynchos) est adapté à la filtration ; beaucoup plus large et plus long que celui du canard souchet (Anas clypeata).
Le bec de l'ornithorynque présente des adaptations qui rappellent celles du canard souchet (« bec » long et large, lamelles osseuses).
Dessin (profil) de la mâchoire et des dents du phoque crabier (Lobodon carcinophagus), formant un organe de filtration du krill antarctique qui constitue 98 % de sa nourriture. Ici, comme chez les baleines à fanon, un filtreur s'alimente d'autres filtreurs.

La microphagie suspensivore (en anglais « filterfeeding ») est un mode d'alimentation qui consiste à se nourrir d'organismes de très petite taille (phytoplancton, zooplancton) ou de particules organiques alimentaires (microphagie) en les filtrant du milieu aquatique dans lesquelles ils sont en suspension.

Ce mode alimentaire ne concerne donc — par définition – que des animaux aquatiques (dits « suspensivores ». On lui oppose la microphagie déposivore, qui concerne l'alimentation particulaire déposée sur le fond ou attachée aux sédiments. L'une et l'autre nécessitent et suscitent des adaptations spécialisées.

Les particules collectées et consommées par les filtreurs sont du phytoplancton, du zooplancton, vivants ou morts, ou encore des excrétats ou excréments produits par ces derniers ou par d'autres organismes.

Les filtreurs comprennent un important sous-groupe d'animaux appelé « suspensivores ». On y trouve par exemple les palourdes, le krill, les éponges, mais aussi des espèces de mammifères telles que les baleines et dugongs[1] et de nombreux poissons dont certains requins (ex : Requin pèlerin). Certains oiseaux, dont les flamants qui semblent les plus « spécialisés », sont également des organismes filtreurs grâce à un bec dont les côtés (chez le flamant) ou l'intérieur (chez certains canards) sont garnis de lamelles en forme de « peigne ».

Certaines espèces (éponges, coraux, cnidaires... ont des comportements coloniaux) et peuvent contribuer à la formation de récifs et de puits de carbone marins (sous forme de carbonate de calcium CaCO3 principalement).

Écologie et physiologie

Grâce à des adaptations physiologiques variées[2],[3], les filtreurs sont apparus dans presque tous les milieux aquatiques, où ils jouent un rôle très important, voire majeur pour :

Ces organismes jouent également un rôle dans le mélange permanent des couches d'eau (là où ils sont présents), participant pour certains aux phénomènes de bioturbation, à grande géographique pour les grands requins ou les baleines.

Trois éléments interviennent dans tout processus de filtration (ils en modulent l'efficience et d'autres caractéristiques) :

1°) les particules : Ils sont inertes ou motiles, et à caractériser par leur taille, masse, forme et structure et charge électrostatique dans le cas des très petites particules.
Des questions d'écotoxicité ou d'appétence peuvent parfois intervenir ;
2°) le fluide : ici il s'agit de l'eau, qui est plus ou moins turbulente, vive ou stagnante (vélocité), animée en courant continu (dans une rivière) ou avec effets d'aller et de retour (vagues de l'estran rocheux ou sableux). Cette eau est plus ou moins dense ou visqueuse selon sa salinité, dureté, température et sa teneur en divers éléments (dont mucilages).
La dynamique des fluides, selon les cas, facilite ou inhibe la capture du plancton par les organismes filtreurs ( ex : Dreissena polymorpha et Dreissena bugensis retiennent moins de plancton quand le courant est très faible ou très fort). L'agitation de l'eau augmente son taux d'oxygène et de particules en suspension. Selon [9]« On comprendra mieux la dynamique de la chaîne trophique de ces écosystèmes lorsque l'on prendra en compte les effets de la dynamique des fluides sur la capacité des organismes de filtrer la nourriture et sur le transport local, du seston par mélange turbulent ».
3°) le filtre : Il peut s'agir d'un système (piège) passif ou actif, faisant souvent intervenir des organes spécialisés, dont plaques fibres ou soies, une porosité et/ou un mucus... Diverses stratégies ont été développées par l'évolution pour éviter ou contourner les problèmes de colmatage du filtre.

Rubenstein distingue[10] chez les organismes filtreurs cinq principaux mécanismes de filtration (qui peuvent se combiner) :

  1. interception directe des particules[10] ;
  2. impaction intertielle[10] ;
  3. déposition gravitationnelle (capture passive de la part de l'organisme)[10] ;
  4. diffusion de particules douées de motilité ou déposition[10] ;
  5. piégeage électrostatique (efficace uniquement quand le courant est très faible)[10].

Les premières équations utilisées pour modéliser la capacité de filtration d'organismes aquatiques dérivent de celles utilisées pour la filtration d'aérosols. Elles sont à valider par les expériences de laboratoire et observations faites dans la nature.

Enjeux

État, pression et menaces pour les « filtreurs », services écosystémiques

L'importance écologique de ces organismes en tant que filtreur ou organismes bioconstructeurs récifaux n'a été que récemment établie. Beaucoup de filtreurs sont des « espèces facilitatrices », voire des « espèces-ingénieur », ou espèce clé-de-voûte dans le cas des coraux.

La plupart des organismes filtreurs importants ont été surexploités, dont notamment les baleines, dugongs, tortues, moules et huîtres, ou autres bivalves au point que leurs populations se sont rapidement effondrées au XIXe ou XXe siècle, n'ayant dans les meilleurs des cas recouvré qu'une faible part de leur ancienne abondance. La surpêche d'espèces pélagiques ou récifales, et en particulier des requins ou des poissons destinés à la farine de poisson se poursuit, même si pour certaines espèces le nombre de prise associé à un même effort de pêche a considérablement diminué.

Importance écologique

Les suspensivores ont une grande importance écosystémique d'abord en jouent un rôle important pour l'auto-épuration des milieux, fournissant ainsi des services écosystémiques irremplaçables. Certains d'entre eux (Chironomidae, bivalves et coraux notamment jouent aussi un rôle majeur dans le cycle du carbone et d'autres éléments).

Concernant les bivalves ; la majorité sont des filtreurs (Seules quelques espèces sont prédatrices et/ou foreuses).

Les néphridies (équivalent du rein et des organes excréteurs) de ces mollusques leur permettent de filtrer et éliminer les déchets, polluants ou toxines biologiques. Certains de ces toxiques sont dégradés, métabolisés ou fixés dans la chair de l'animal, d'autres sont pour partie accumulés dans la coquille au fur et à mesure de sa croissance (stratégie de détoxification) et d'autres encore peuvent être éliminés sous forme d'excrétats susceptibles d'être intégrés dans le sédiment où ils resteront inoffensifs tant que le sédiment n'est pas remué ou exploité pour l'alimentation ou comme habitat par d'autres espèces.

Certains bivalves vivent enfouis dans le sable, dans la vase ou dans une galerie creusée dans le bois ou la roche. Ils s'alimentent grâce à un siphon s'ouvrant à la surface du sédiment ou de leur galerie.

Ainsi les huîtres (trouvées jusqu'à l'entrée de certains estuaires dans les eaux saumâtres) aspirent l'eau par des battements de cils. Le phytoplancton, zooplancton, les bactéries et d'autres particules en suspension dans l'eau sont captés et piégés par les branchies et leur mucus, puis transportés jusqu'au tube digestif où ils sont digérés et pour les « résidus » expulsés comme matière fécale ou « pseudofeces ».
Chaque huître filtre ainsi jusqu'à cinq litres d'eau par heure et un seul estuaire peut contenir des millions d'huîtres qui formaient même autrefois de véritables récifs pouvant jouer à la fois un rôle de protection ou atténuation contre les tempêtes, les vagues ou de petits tsunamis, et un rôle majeur d'abris pour les poissons et d'autres espèces et de filtration[11].

Les archives et les cartes marines et littorales conservent des témoignages et de nombreux noms de lieux évoquant les récifs ou de grandes abondances d'huîtres, d'huîtres perlières ou de conques ; autrefois si abondants qu'ils présentaient localement un danger pour la navigation[12]. Il n'en reste généralement aujourd’hui que des massifs de coquilles vides, en raison de la pollution, de l'introduction de parasites, d'aménagements portuaires ou estuariens, de l'exploitation des coquilles ou d'une destruction par les chaluts ou par la surexploitation des colonies de coquillages par la pêche à pied. Cette régression a des conséquences écologiques[13].

Les coquilles se conservent relativement bien et peuvent être datées. Les paléontologues et écologues disposent ainsi d'archives naturelles sur notre paléoenvironnement, permettant d'étudier les variations d'abondance des moules ou huîtres au cours des âges. On sait ainsi que depuis environ 1200 ans, les populations européennes d'huîtres sont d'abord restées très stables (durant près de 1000 ans), les naissances compensant les mortalités naturelles. Puis elles ont fortement augmenté, en coïncidence avec un apport accru de sédiments provenant de la terre, liés au ruissellement accru, induits par la destruction des zones humides et l'érosion induite par le fort développement du labour agricole à partir des années 1750. La biomasse en huître a alors triplé en un siècle (de 1830 à 1930) puis a connu un développement encore plus spectaculaire au début du XIXe siècle (multiplication par 8 en environ 50 ans), jusqu'à un « pic » d'augmentation, en 1884, avant un brutal effondrement des populations de récifs d'huîtres, en grande partie à cause du dragage mécanique[14] des chenaux, ports, estuaires, pour les besoins de la navigation ou pour l'exploitation des coquilles qui étaient broyées et utilisées comme amendement agricole et complément alimentaire pour la volaille (source de calcium pour les œufs). Les données disponibles pour l'Europe « montrent clairement que les huîtres ont été en mesure de limiter le risque d'eutrophisation induite par l'augmentation des entrées d'éléments nutritifs de 1750 à 1930, avant que les populations ne s'effondrent suite à leur surpêche »[13] ; Les scientifiques ont ainsi estimé que les populations naguère florissantes d'huîtres de la baie de Chesapeake filtraient l'équivalent de la totalité du volume d'eau de l'estuaire des nutriments en excès tous les trois ou quatre jours. Aujourd'hui, les huîtres ont régressé, et les nutriments ont augmenté, faisant que ce même processus prendrait presque un an[15]. Les services écosystémiques rendus par les bivalves filtreurs se sont dégradés, engendrant des problèmes de pollution, de sédimentation, de fragilisation des littoraux et de pullulations de bactéries ou d'algues pouvant poser de graves problèmes écologiques (jusqu'aux zones mortes). Ces problèmes pourraient être aggravés par les fuites de toxiques attendues à partir du début du XXe siècle en provenance des centaines de dépôts immergés de munitions, dans la plupart des mers du monde. Les moules et huîtres et d'autres filtreurs sont susceptibles de capturer et bioaccumuler de nouveaux polluants[16]. Certaines roches sont entièrement constituées de milliards de coquilles fossilisées de bivalves accumulées parfois sur plusieurs mètres d'épaisseur. Elles témoignent du rôle majeur joué par ces espèces dans les cycles biogéochimiques planétaires.

Importance sanitaire

Phénomènes d'invasion biologique

Alors que de nombreuses espèces autochtones régressaient, pour des raisons souvent mal comprises et a priori multifactorielles, plusieurs espèces de filtreurs, introduites hors de leur habitat naturel sont en quelques décennies devenues invasives, dans le monde entier.

Ce phénomène est particulièrement marqué en eau douce (canaux, réservoirs, étangs et lacs) de la région holarctique depuis les années 1970 (Exemple : invasions biologiques dues à Dreissena polymorpha, corbicula fluminea ou moindrement Sinanodonta woodiana[21]... en Europe, à titre d'exemple). Il est étudié avec attention dans l'hémisphère nord depuis les années 1990, mais le problème se pose aussi en Amérique du Sud avec par exemple la palourde asiatique Corbicula fluminea et la moule dorée (Limnoperna fortunei)[22].

Dans ces cas, les filtreurs bivalves non-autochtones prennent les caractéristiques d'espèces-ingénieur qui modifient fortement l'environnement, avec des impacts écologiques et économiques significatifs ;

Certains biologistes estiment que « leurs effets d'ingénierie devraient recevoir un examen plus sérieux lors des initiatives de restauration et de gestion écologique des milieux »[23].

Exemples de filtreurs

Poissons

La plupart des « poissons fourrage » (« Forage fish » pour les anglophones) sont des organismes filtreurs.
C'est le cas par exemple du menhaden de l'Atlantique, qui s'alimente de plancton capturé entre deux eaux peut filtrer 4 à 15 litres d'eau à la minute et ainsi jouer un rôle important dans la clarification de l'eau des océans (la lumière et les UV pénètrent plus profondément dans l'eau claire), le cycle du carbone et les cycles biogéochimiques.
Ces poissons sont un frein naturel à certains blooms planctoniques, et aux marées rouges qui peuvent poser de graves problèmes écotoxicologiques ainsi que des phénomènes de zone morte[24].

Outre des poissons osseux tels que le menhaden, des espèces des quatre sous-classes de requins appartiennent également au groupe des filtreurs.

Crustacés

Organe de filtration d'une crevette de la famille des Mysidae

Insectes

Dans les eaux douces, du niveau des torrents à celui des estuaires, diverses espèces, genres et familles d'insectes aquatiques, sont également suspensivores (souvent uniquement à l'état de larve)[32].

Mammifères

Oiseaux

Le bec des flamants est un organe de filtration adapté à la recherche d'aliments faite tête en bas

Leur bec curieusement recourbé est spécialement adaptés à la filtration de la vase ou d'eaux salées riches en zooplancton. la filtration des animalcules est permise par des structures velues en forme de lamelles qui bordent les mandibules, et une grosse langue à surface rugueuse.

Bivalves

Les Bivalves sont des mollusques à double coquille (à deux valves). Ils ont depuis des millions d'années colonisé les océans, ainsi que les eaux douces et saumâtres. Ils y filtrent l'eau. Ce faisant ils participent à la captation du carbone et du calcium, en les extrayant de la matière organique en suspension. Ils contribuent aussi à éliminer diverses toxines du milieu. On en connait plus de 30 000 espèces, dont les pétoncles, palourdess, huîtres et moules.

Éponges

Éponges de forme tubulaires, attirant de petits poissons récifaux
éponge d'eau douce (Spongilla lacustris) ; spécimen particulièrement riche en pores inhalants.

Le genre Leuconia, par exemple, rassemble des éponges d'environ 10 cm de hauteur et de 1 cm de diamètre. On estime que l'eau y pénètre via plus de 80 000 canaux à une vitesse de 6 cm par minute. Mais comme les Leuconia utilisent plus de 2 millions de chambres flagellées dont le diamètre combiné est beaucoup plus grande que celui des canaux, le débit d'eau est ralenti dans les chambres à 3,6 cm/h[41]. Un tel débit permet à l'éponge de facilement capturer sa nourriture. Toute l'eau est expulsée par un seul orifice (dit « oscule ») à une vitesse d'environ 8,5 cm par seconde, une force capable de déporter le jet et son contenu à une distance suffisante de l'éponge pour qu'elle ne filtre pas toujours en grande partie la même eau là où il n'y a pas de courant.

Cnidaires

Quelques exemples de taxons filtreurs parmi les cnidaires

Autres filtreurs

D'autres exemples de filtre d'alimentation organismes suivants:

Voir aussi

Articles connexes

Liens externes

Bibliographie

Références

Certains aspects de l'activité de filtration d'eau de filtreurs / / Hydrobiologia. 2005. Vol. 542, n ° 1. p. 275 à 286

  1. Roberto Sozzani, Comportement des dugongs, consulté 2012-07-14
  2. Jorgensen, C. B. 1966. Biology of Suspension Feeding. Oxford: Pergamon. 357 pp.
  3. Jorgensen, C. B. 1975. Comparative physiology of suspension feeding. Ann. Rev. Physiol. 37:57-79
  4. Cloern, J. E. (1981a). What regulates phytoplankton biomass in South San Francisco bay. Am. Soc. Limnol. Oceanogr., 44th annual meeting, p. 18
  5. C.B. Officer, T.J. Smayda et R. Mann (1982), Benthic filter feeding: a natural eutrophication control ; Marine Ecology Progress Series, Vol.9, p. 203-210, 1982-07-31
  6. Vahl, 0. (1973b). Pumping and oxygen consumption rates of Mytilus edulis L. of different sizes. Ophelia 12:45-52
  7. Boynton, W. R., Kemp, W M.. Osbourne, C. G. (1980). Nutrient fluxes across the sediment-water interface in the turbid zone of a coastal plain estuary. In: Kennedy, V. S. (ed.) Estuarine perspectives. Academic Press, New York, p. 93-109
  8. Kuenzler, E. J. (1961). Phosphorus budget of a mussel populatlon. Limnol. Oceanogr. 6: 400-
  9. Ackerman J. D, Effect of velocity on the filter feeding of dreissenid mussels (Dreissena polymorpha and Dreissena bugensis) : implications for trophic dynamics ; résumé inist/CNRS ; Canadian journal of fisheries and aquatic sciences ; 1999, vol. 56, no9, p. 1551-1561 (1 p.1/4) ; (ISSN 0706-652X)
  10. a b c d e et f Daniel I. Rubenstein; M.A.R. Koehl, The mechanisms of filter feeding: some theoretical considerations ; American Naturalist, Vol. 111, no 981 (sept-oct 1977), 981-994 (PDF, 15pp.)
  11. LD Coen & al., The role of oyster reefs as essential fish habitat: a review of current knowledge and some new perspectives ; American Fisheries Society Symposium, 1999
  12. G. B. Goode, E. Ingersoll, in The History and Present Condition of the Fishery Industries, Ed. (U.S. Department of the Interior, Tenth Census of the United States, Washington, DC, 1881, p. 1–252.
  13. a et b Jeremy B. C. Jackson & al Historical Overfishing and the Recent Collapse of Coastal Ecosystems (Surpêche historique et effondrement récent des écosystèmes côtiers), (Review) ; Science, vol 293 27 juillet 2001, 10 pp.
  14. B. J. Rothschild, J. S. Ault, P. Goulletquer, M. He´ral, Mar. Ecol. Prog. Ser. 111, 29 (1994)
  15. Les récifs : importance écologique; Ed : NOAA (US National Oceanic and Atmospheric Administration), consulté 2008-01-16 (lien mort constaté en oct 2010)
  16. Les rôles comparatifs de suspension qui se nourrissent dans les écosystèmes. Springer. Dordrecht, 359 p.
  17. Mann, R., Ryther, J. H. (1977). Growth of six species of bivalve molluscs in a waste recycling-aquaculture system. Aquaculture 11: p. 231 et suivantes
  18. Brown, A. W. A., Deom, J. O. 1973. Summary: Health aspects of man-made lakes. In Man-made Lakes: Their Problems and Environmental Effects, Geophys. Monogr. Ser. 17, ed. W. C. Ackermann, G. F. White, E. B. Worthington, p. 755-68. Washington DC: Am. Geophys. Union
  19. Heyneman, D. 1971. Mis-aid to the third world: Disease repercussions caused by ecological ignorance. Can. J. Public Health 62:303-13
  20. Merritt, R. W., Newson, H. D. 1978. Ecology and management of arthropod populations in recreational lands. In Perspectives in Urban Entomology, ed. G. W. Frankje, C. S. Koehler, p. 125- 62. New York : Academic
  21. Mouthon, J. (2008), Découverte de Sinanodonta woodiana (Lea, 1834) (Bivalvia : Unionacea) dans un réservoir eutrophe : le Grand Large en amont de Lyon (Rhône, France) ; MalaCo, 5 : 241-243. Publié sur http://www.journal-malaco.fr
  22. Gustavo Darrigran, Potential Impact of Filter-feeding Invaders on Temperate Inland Freshwater Environments ; Biological Invasions, 2002, Volume 4, Numbers 1-2, Pages 145-156 (résumé)
  23. Ronaldo Sousa, Jorge L. Gutiérrez et David C. Aldridge, Non-indigenous invasive bivalves as ecosystem engineers ; Biological Invasions Volume 11, Number 10 (2009), 2367-2385, DOI: 10.1007/s10530-009-9422-7 (Résumé)
  24. (en) H. Bruce Franklin, « Les pertes nets: déclarer la guerre à l'Menhaden », Mother Jones, (consulté le ) long article sur le rôle de menhaden dans les résultats de l'écosystème et possible de la surpêche
  25. Ed. Ranier Froese et Daniel Pauly, Rhincodon typus ; Ed: FishBase, consulté 2006-09-17
  26. Martin, R. Aidan.. Elasmo Research. ReefQuest, consulté 2006-11-17
  27. Whale shark ; Icthyology at the Florida Museum of Natural History (Ichtyologie au Musée d'Histoire Naturelle de Floride). Consulté 2006-09-17
  28. a et b C. Knickle, L. Billingsley & K. DiVittorio. Biological Profiles basking shark ; Florida Museum of Natural History. Consulté 2006-08-24.
  29. a et b Wim Hoogenboezem, Jos G. M. van den Boogaart, Ferdinand A. Sibbing, Eddy H. R. R. Lammens, Arie Terlouw, Jan W. M. Osse, A New Model of Particle Retention and Branchial Sieve Adjustment in Filter-Feeding Bream (Abramis brama, Cyprinidae) ; Journal canadien des sciences halieutiques et aquatiques, 1991, 48(1): 7-18, 10.1139/f91-002, en ligne 2011-04-11 (Résumé)
  30. Kils, U.: Swimming and feeding of Antarctic Krill, Euphausia superba - some outstanding energetics and dynamics - some unique morphological details. In Berichte zur Polarforschung, Institut Alfred-Wegener pour la recherche polaire et marine
  31. T. W. Budd, J. C. Lewis, M. L. Tracey, The filter-feeding apparatus in crayfish ; Revue canadienne de zoologie, 1978, 56(4): 695-707, 10.1139/z78-097 (Résumé)
  32. a et b J.Bruce Wallace & Richard W. Merrit, Filter-feeding ecology of aquatic insects ; Annual review of Entomology, 1980, 25-103-32
  33. Brennan, A. & A. J. McLachlan, 1979. Tubes and tube building in a lotic chironomid (Diptera) community. Hydrobiologia 67: 173–178
  34. a et b McLachlan, A. J. 1977. Some effects of tube shape on the feeding of Chironomus plumosus L. J. Anim. EcoL 46:139-46 131. McLachlan (Résumé)
  35. Kurtak, D. C. 1973. Observations on filter feeding by the larvae of black flies. PhD thesis. Cornell Univ., Ithaca. 157 pp.
  36. Kurtak, D. C. 1978. Efficiency of filter feeding of black fly larvae. Can. J. ZooL 56:1608-23
  37. Shapas, f..J., Hilsenhqff, W. L. 1976. Feeding habits of Wisconsin's predominant lotic Plecoptera, Ephemeroptera and Trichoptera. Great Lakes Entomol. 9:175-88 195.
  38. Wiggins, G. B. 1977. Larvae of the North American Caddisfly Genera. Toronto: Univ. Toronto Press. 401 pp
  39. Article de l'encyclopédie Larousse ornithorynque, consultée 2012-06-14
  40. a et b Sandra E. Shumway, Particle selection, ingestion, and absorption in filter-feeding bivalves  ; Journal of Experimental Marine Biology and EcologyVolume 91, Issues 1–2, 5 September 1985, Pages 77–92 (résumé)
  41. See Hickman and Roberts (2001) Integrated principles of zoology — 11th ed., p.247
  42. Frappé TH et al. Phylogénie des Annélides et statut de Sipuncula et Echiura ; Journal = BMC Evolutionary Biology, Vol.7; 57 Éditeur = BioMed Central ; 27/05/2007 (résumé ; Doi:10.1186/1471-2148-7-57