IEEE 802.11n — версия стандарта 802.11 для сетей Wi-Fi, появившаяся в 2009 году. Получила название Wi-Fi 4[1]. Работает в диапазонах 2,4 и 5 ГГц (устройства, поддерживающие диапазон 5 ГГц встречаются гораздо реже), позволяет достигать скоростей до 300 Мбит/с при ширине канала 40 МГц на каждую независимую антенну[2].

О стандарте

Этот стандарт был утверждён 11 сентября 2009[3][4].

Стандарт 802.11n повышает скорость передачи данных в 4-11 раз по сравнению с устройствами стандартов 802.11g (максимальная скорость которых равна 54 Мбит/с), при условии использования в режиме 802.11n с другими устройствами 802.11n. Теоретически 802.11n способен обеспечить скорость передачи данных до 600 Мбит/с брутто, применяя передачу данных сразу по четырём антеннам, однако обычно встречаются решения 802.11n с одной антенной и скоростью до 150 Мбит/с.

Устройства 802.11n могут поддерживать работу в диапазонах 2,4 или 5,0 ГГц.

Кроме того, устройства 802.11n могут работать в трёх режимах[5]:

Черновую версию стандарта 802.11n (DRAFT 2.0) поддерживают многие современные сетевые устройства. Итоговая версия стандарта (DRAFT 11.0), которая была принята 11 сентября 2009 года, обеспечивает скорость до 300 Мбит/с, Многоканальный вход/выход, известный как MIMO, и большее покрытие.

Особенности стандарта

Реальная скорость передачи данных

В разделе не хватает ссылок на источники (см. рекомендации по поиску). Информация должна быть проверяема, иначе она может быть удалена. Вы можете отредактировать статью, добавив ссылки на авторитетные источники в виде сносок. (11 мая 2011)

Реальная скорость передачи данных всегда меньше канальной скорости. Для Wi-Fi реальная скорость передачи данных обычно отличается более чем в два раза в меньшую сторону[6].

Кроме того, существует ещё несколько факторов, ограничивающих реальную пропускную способность:

Стоит отметить, что при работе в стандарте 802.11b или при обеспечении совместимого с ним режима существует всего три непересекающихся канала, то есть которые не мешают друг другу (обычно это 1-й, 6-й и 11-й). То есть если у соседа за стеной работает точка доступа на 1-м канале, а у вас дома на 3-м, то эти точки доступа будут мешать друг другу, тем самым уменьшая скорость передачи данных.

Два частотных диапазона

По стандарту 802.11n устройства могут использовать диапазоны 2,4 или 5 ГГц, что повышает надёжность связи, уменьшая влияние радиочастотных помех. На 2008 год практически все клиенты 802.11n на основе CardBus и ExpressCard умеют работать только в диапазоне 2,4 ГГц, а поддерживают оба диапазона только некоторые из встраиваемых адаптеров[7].

Каналы шириной 40 MHz

В спецификации 802.11n предусмотрены стандартные каналы шириной 20 МГц, а также широкополосные 40 МГц. Это решение повышает пропускную способность до 150 Мбит/с брутто на поток. Следует отметить, что в диапазоне 2,4 ГГц можно разместить только один широкополосный канал, для этого должны быть свободны 2 из 3 непересекающихся канала (6-й и 1-й или 11-й), что невозможно в многоквартирных домах. С 20 МГц каналами стандарт предоставляет лишь около 72 Мбит/с брутто на поток[2].

MIMO

Стандарт 802.11n вводит важное нововведение — MIMO (англ. Multiple Input, Multiple Output — «много входов, много выходов»), с помощью которого осуществляется пространственное мультиплексирование: одновременная передача нескольких информационных потоков по одному каналу, а также использование для доставки сигнала многолучевого распространения, которое минимизирует влияние помех и потерь данных, но требует наличия нескольких антенн. Именно возможность одновременной передачи и приема данных делает пропускную способность устройств 802.11n более высокой[7].

На начало 2013 года большинство предлагаемых производителями точек доступа поддерживает MIMO 2×2 или 1×1, то есть SISO (однопотоковая передача). Встроенные в мобильные устройства Wi-Fi-адаптеры обычно поддерживают режим SISO.

Антенны

Эта статья или раздел нуждается в переработке.Информация в разделе устарела и не подкреплена ссылками на источникиПожалуйста, улучшите статью в соответствии с правилами написания статей.

В устройствах IEEE 802.11n обычно используются антенные конфигурации 3×3 или 2×3 для цепей передачи и приёма информации, но возможно со временем будут поддерживаться и другие. Более простые модели реализуют схему из одной передающей и двух принимающих радиоцепей (так как абоненты обычно в основном загружают данные, а не передают). Пользователи с повышенными требованиями к скорости передачи данных смогут приобрести модели с конфигурацией антенн 4×4[7].

Питание через сеть Ethernet

Стандарт сетевого питания IEEE 802.3af-2003 (PoE) не обеспечивает мощности, необходимой для электроснабжения точек доступа с антенными конфигурациями 3×3 и выше. Ему на смену пришёл стандарт IEEE 802.3at-2009, предусматривающий увеличение максимальной мощности в два раза, что достаточно для питания устройств с конфигурацией антенн 4×4.

Узкие места в сети

С учётом того, что у точек доступа, поддерживающих данный стандарт, пропускная способность может превысить 100 Мбит/с, каналы Fast Ethernet вполне могут стать узким местом на пути сетевого трафика. Поэтому при разворачивании беспроводной сети желательно использовать коммутаторы Gigabit Ethernet.

Агрегация в сети

Этот раздел статьи ещё не написан. Здесь может располагаться отдельный раздел. Помогите Википедии, написав его. (31 января 2017)

Обратная совместимость

Предусмотрено, что компоненты на базе IEEE 802.11n совместимы с устройствами стандартов 802.11b и 802.11g в диапазоне 2,4 ГГц и с устройствами 802.11a (5 ГГц)[8]. Ожидается, что в новых сетях 802.11n ещё некоторое время будут работать клиенты, использующие устаревшие стандарты, поэтому при развёртывании беспроводных ЛВС следует предусмотреть их поддержку.

Стандарт 802.11n поддерживает ряд режимов работы в смешанном окружении, в присутствии устройств, реализующих только более старые стандарты 802.11g, 802.11b и 802.11a. В уровни MAC и PHY стандарта 11n включены следующие меры: защита на уровне PHY (Mixed Mode Format protection, L-SIG TXOP Protection — все передачи 11n ведутся внутри фреймов 802.11a или 802.11g transmission), использование двойной CTS защиты в каждой 20 МГц половине 40 МГц каналов (уровень PHY), защита на уровне MAC при помощи обмена фреймами RTS/CTS или передачи фрейма CTS.

Форма зон Wi-Fi

При отсутствии помех распространению радиоволн зоны беспроводных ЛВС обычно имеют форму тора[9]. Предусмотренные стандартом 802.11n технологии MIMO и пространственного мультиплексирования делает зоны менее предсказуемыми и регулярными, так как форма начинает зависеть от условий в помещении. Таким образом контрольно-измерительный инструментарий для планирования сети может потребовать модернизации.

Индекс модуляции и схемы кодирования

Беспроводные точки доступа и клиенты 802.11n производят согласование ширины канала и пространственных потоков (англ. spatial streams). Число пространственных потоков зависит от количества антенн. Так, максимальную теоретическую пропускную способность можно достичь лишь в конфигурации 4х4: четыре передающих и четыре приёмных антенн. Стандарт 802.11n определяет индекс модуляции и схемы кодирования (англ. modulation and Coding Scheme. MCS) в виде целого числа от 0 (соответствует самому медленному, но надёжному режиму) до 31 (наиболее быстрый, но чувствительный к радиопомехам режим). Индекс определяет тип модуляции радиочастоты, скорость кодирования (англ. coding rate), защитный интервал (англ. guard interval) и ширину канала. В сочетании эти параметры определяют теоретическую скорость передачи данных, начиная от 6,5 Мбит/с до 600 Мбит/с. Максимальная скорость может быть достигнута за счет использования всех возможных опций стандарта 802.11n[10].

Тип модуляции (например, BPSK из 802.11 или QAM из 802.11a) и скорость кодирования определяют способ передачи данных в эфир. Более новые методы модуляции могут быть более эффективными и поддерживать более высокие скорости передачи данных, а более старые служат для обеспечения обратной совместимости. Для достижения максимальной скорости соединения 300 Мбит/с требуется, чтобы и точка доступа, и устройство клиента поддерживали два пространственных потока и удвоенную ширину канала 40 МГц[10].

Альянс Wi-Fi

Спецификация 802.11n ратифицирована WECA 11 сентября 2009 года.

802.11n в России

В России этот стандарт официально сертифицирован. Оборудование стандарта 802.11n разрешено к применению на территории России в диапазонах 2400—2483.5, 5150—5350 и 5650—5725 МГц приказом Министерства связи и массовых коммуникаций России от 14 сентября 2010 г. № 124 «Об утверждении Правил применения оборудования радиодоступа. Часть I. Правила применения оборудования радиодоступа для беспроводной передачи данных в диапазоне от 30 МГц до 66 ГГц». Подготовкой норм применения стандарта занимался ФГУП Научно-исследовательский институт радио (НИИР).

См. также

Примечания

  1. Wi-Fi Alliance® introduces Wi-Fi 6 | Wi-Fi Alliance (англ.). www.wi-fi.org. Дата обращения: 3 октября 2018. Архивировано 3 апреля 2019 года.
  2. 1 2 Архивированная копия. Дата обращения: 5 ноября 2018. Архивировано 5 ноября 2018 года.
  3. Wi-Fi стал быстрее в разы: стандарт 802.11n утвержден Архивировано 28 января 2012 года.
  4. 802.11n Wi-Fi: ответы на 5 больших вопросов. Дата обращения: 28 октября 2009. Архивировано из оригинала 8 мая 2011 года.
  5. Ian Poole. IEEE 802.11n Standard (англ.). Radio-Electronics.com (2013). Дата обращения: 25 октября 2018. Архивировано 25 октября 2018 года.
  6. http://service.d-link.ua/sites/default/files/files/Wireless.zip Архивная копия от 15 августа 2014 на Wayback Machine (стр 35)
  7. 1 2 3 Эндрю Гарсиа Десять самых актуальных особенностей 802.11n Архивная копия от 25 декабря 2015 на Wayback Machine 30 октября, PCWeek.ua — 12 ноября 2008 № 20 (90)
  8. Joanie Wexler. How 802.11n backward compatibility works (англ.). Network World (6 февраля 2006). Дата обращения: 25 октября 2018. Архивировано 25 октября 2018 года.
  9. Cisco Systems, Inc. Сравнение всенаправленной и направленной антен. Дата обращения: 15 ноября 2016. Архивировано 16 ноября 2016 года.
  10. 1 2 Базовые положения стандарта IEEE 802.11n для сетей Wi-Fi Архивировано 10 декабря 2011 года.

Ссылки