In mathematical analysis, and especially functional analysis, a fundamental role is played by the space of continuous functions on a compact Hausdorff space with values in the real or complex numbers. This space, denoted by is a vector space with respect to the pointwise addition of functions and scalar multiplication by constants. It is, moreover, a normed space with norm defined by

the uniform norm. The uniform norm defines the topology of uniform convergence of functions on The space is a Banach algebra with respect to this norm.(Rudin 1973, §11.3)

Properties

Generalizations

The space of real or complex-valued continuous functions can be defined on any topological space In the non-compact case, however, is not in general a Banach space with respect to the uniform norm since it may contain unbounded functions. Hence it is more typical to consider the space, denoted here of bounded continuous functions on This is a Banach space (in fact a commutative Banach algebra with identity) with respect to the uniform norm. (Hewitt & Stromberg 1965, Theorem 7.9)

It is sometimes desirable, particularly in measure theory, to further refine this general definition by considering the special case when is a locally compact Hausdorff space. In this case, it is possible to identify a pair of distinguished subsets of : (Hewitt & Stromberg 1965, §II.7)

The closure of is precisely In particular, the latter is a Banach space.

References