Un robot domestico

La robotica è la disciplina dell'ingegneria che studia e sviluppa metodi che permettano a un robot di eseguire dei compiti specifici riproducendo in modo automatico il lavoro umano. Anche se la robotica è una branca dell'ingegneria, più precisamente della meccatronica, in essa confluiscono approcci di molte discipline sia di natura umanistica, come linguistica, sia scientifica: biologia, fisiologia, psicologia, elettronica, fisica, informatica, matematica e meccanica.

Origini del termine

[modifica | modifica wikitesto]

La progettazione di automi e macchine meccaniche è una tradizione antica che risale all'antichità. Non è possibile identificare un unico individuo come il primo a pensare ad un uomo meccanico. Ci sono esempi di macchine automatizzate e meccanismi avanzati nella mitologia greca e romana, nell'arte e nella scienza cinese e islamica. Ad esempio nella mitologia greca si parla di Talos, un gigante di bronzo meccanico creato da Efesto per la protezione dell'isola di Creta. Anche nella mitologia romana si parla di il robot di bronzo che si chiamava Talos. Questi sono solo alcuni esempi di come l'idea di un uomo meccanico è presente nella cultura antica.

La parola robotica proviene dal ceco robota, che ha il significato di "lavoro pesante" o "lavoro forzato". Questo termine è stato introdotto dallo scrittore ceco Karel Čapek, nel 1920 nel suo racconto R.U.R. (Rossum's Universal Robots).[1] Il termine inglese derivato robotics, secondo l'Oxford English Dictionary, compare per la prima volta in un racconto di fantascienza dello scrittore Isaac Asimov intitolato Bugiardo! (Liar!, 1941). Sempre ad Asimov si deve anche l'invenzione delle famose Tre Leggi della Robotica enunciate interamente nel racconto Circolo vizioso (Runaround, 1942); entrambi i racconti fanno parte dell'antologia Io, Robot.

Campi di utilizzo

[modifica | modifica wikitesto]

Modellistica

[modifica | modifica wikitesto]
Prototipo robot Arduino con vista dall'alto

La realizzazione di un qualsiasi compito da parte di un robot è subordinata all'esecuzione di un movimento specifico che necessita di essere pianificato. L'esecuzione corretta di tale movimento è affidata a un'unità di controllo che invia un insieme opportuno di comandi sulla base del tipo di moto desiderato. Un sistema robotico presenta una struttura meccanica articolata ed è fondamentale schematizzarne il comportamento mediante un modello matematico che individui i legami di causa-effetto tra gli organi costituenti.

Analisi cinematica

[modifica | modifica wikitesto]

L'analisi cinematica di un robot concerne la descrizione del suo moto prescindendo dalle considerazioni sulle forze e i momenti che lo provocano. Essa si divide in:

L'individuazione di tali legami consente di formulare il problema cinematico inverso che consiste nel ricavare i valori da attribuire ai parametri interni del robot per inseguire una determinata specifica di moto.

Analisi dinamica

[modifica | modifica wikitesto]

Modellare la dinamica di un robot è indispensabile per progettarne il sistema di controllo. Di fatto il moto di un sistema robotico è assicurato da un sistema di attuazione che ha il compito di fornire la potenza necessaria ai compiti da svolgere trasformandola da una forma all'altra in base alle esigenze. Anche qui occorre distinguere tra dinamica e dinamica inversa: la prima si occupa del calcolo delle accelerazioni dei componenti del robot in funzione delle forze di attuazione ed è utile in simulazione, la seconda ricerca metodi per determinare le forze di attuazione da dare per ottenere le accelerazioni desiderate.

Pianificazione del sistema

[modifica | modifica wikitesto]

Un problema cruciale risiede nella specifica dei movimenti da imporre al robot per svolgere i compiti ad esso affidati. Compito della pianificazione di traiettorie è quello di generare leggi orarie per le variabili caratteristiche del sistema, partendo da una descrizione informale del tipo di moto che si vuole ottenere. In particolare bisogna evitare le collisioni con i possibili ostacoli presenti nell'ambiente di lavoro attraverso strumenti di natura algoritmica quali i diagrammi di Voronoi o il metodo dei potenziali artificiali.

Controllo

[modifica | modifica wikitesto]

Le traiettorie generate nella fase di pianificazione costituiscono l'ingresso di riferimento del sistema di controllo del robot. Quest'ultimo è un sistema di estrema complessità, e ogni suo modello risulta inadeguato a causa della presenza di numerosi effetti dinamici imprevisti, tra i quali gli attriti e gli accoppiamenti tra i componenti. È dunque necessario introdurre un certo numero di anelli di retroazione, senza i quali risulterebbe impossibile garantire il soddisfacimento dei requisiti di precisione desiderati. Affinché il robot possa monitorare istante per istante di quanto il suo comportamento si scosti da quello pianificato, deve essere dotato di sensori in grado di misurare grandezze quali posizione, velocità, forze scambiate con l'ambiente.

Sensori

[modifica | modifica wikitesto]

I sensori si dividono in due grandi categorie:

Encoder

[modifica | modifica wikitesto]

Gli encoder sono sensori propriocettivi in grado di effettuare la trasduzione della posizione angolare dei giunti del robot. Rivestono un ruolo essenziale nell'ambito della robotica industriale. Ne esistono due tipi.

Distanza

[modifica | modifica wikitesto]

Tra i sensori in grado di valutare la distanza degli oggetti nelle vicinanze vi sono i SONAR che utilizzano impulsi acustici dei quali viene misurato il tempo di volo sensore-ostacolo-sensore. Conoscendo la velocità di propagazione del suono è possibile calcolare la distanza dall'ostacolo. Nelle applicazioni di robotica sottomarina e negli ambienti con scarsa visibilità sono spesso l'unica soluzione attuabile. Un'ulteriore possibilità è costituita dal LASER, la cui efficacia è però limitata dal minimo intervallo di tempo osservabile in quanto l'elevatissimo valore della velocità della luce rende il tempo di volo generalmente impercettibile.

Visione

[modifica | modifica wikitesto]

Un altro strumento utile al robot per orientarsi nell'ambiente in cui opera è la telecamera. Essa sfrutta l'intensità luminosa riflessa dagli oggetti per ricostruirne l'aspetto. Conoscendo i parametri caratteristici della lente è possibile risalire dalla rappresentazione dell'oggetto nel piano immagine alle sue dimensioni reali e alla sua distanza. Spesso i robot impiegano un sistema di telecamere multiplo che consente di valutare la profondità dell'ambiente tramite la stereoscopia.

Attuazione

[modifica | modifica wikitesto]

Sulla base dell'errore di inseguimento tra i riferimenti e i valori misurati delle grandezze di interesse del robot, il controllore del sistema deve effettuare un'azione correttiva volta a modificare i parametri correnti del moto della struttura. A tale scopo occorrerà aumentare o ridurre la potenza fornita ai motori che si occupano di convertire l'energia ricevuta dalla fonte di alimentazione in energia meccanica. Ne esistono vari tipi:

Architettura software

[modifica | modifica wikitesto]

L'unità di controllo di un sistema robotico ha il compito di gestire le operazioni che devono essere effettuate sulla base di un modello interno del robot e dei dati forniti dai sensori. Per ottenere un'organizzazione flessibile in grado di separare le attività ad alto livello da quelle più elementari, è opportuno che l'architettura di controllo sia ripartita in livelli gerarchici. In particolare, sul gradino più alto vi è la decomposizione del compito da svolgere in attività ad un elevato grado di astrazione, mentre alla base della piramide vi sono gli algoritmi che determinano i segnali forniti ai motori. Ciascun livello invia il risultato della propria computazione al livello sottostante, dal quale è retroattivamente influenzato.

Programmazione

[modifica | modifica wikitesto]

Vi sono tre approcci principali alla programmazione di un robot.

Statistiche

[modifica | modifica wikitesto]

Secondo il World Robotica 2023, il 2022 è stato il secondo anno consecutivo che ha visto più di 500.000 nuovi robot installati. L'Asia assorbe il 73% della produzione e la sola Cina più della metà delle nuove installazioni. L'Italia è il sesto mercato al mondo.[2]

Note

[modifica | modifica wikitesto]
  1. ^ Arduino, p. 562.
  2. ^ Lorenzo Tirotta, Robotica, l'Italia è il sesto mercato più grande al mondo! La classifica, su hwupgrade.it, 14 novembre 2023.

Bibliografia

[modifica | modifica wikitesto]

Voci correlate

[modifica | modifica wikitesto]

Altri progetti

[modifica | modifica wikitesto]

Collegamenti esterni

[modifica | modifica wikitesto]
Controllo di autoritàThesaurus BNCF 47312 · LCCN (ENsh85114628 · GND (DE4261462-4 · BNE (ESXX550609 (data) · BNF (FRcb11983019n (data) · J9U (ENHE987007541228205171
  Portale Ingegneria: accedi alle voci di Wikipedia che trattano di ingegneria