This article includes a list of general references, but it lacks sufficient corresponding inline citations. Please help to improve this article by introducing more precise citations. (November 2015) (Learn how and when to remove this template message)
Two-stage charge pump with DC voltage supply and a pump control signal S0
Dickson charge pump with diodes
Dickson charge pump with MOSFETs
PLL charge pump

A charge pump is a kind of DC-to-DC converter that uses capacitors for energetic charge storage to raise or lower voltage. Charge-pump circuits are capable of high efficiencies, sometimes as high as 90–95%, while being electrically simple circuits.

Description

Charge pumps use some form of switching device to control the connection of a supply voltage across a load through a capacitor in a two stage cycle. In the first stage a capacitor is connected across the supply, charging it to that same voltage. In the second stage the circuit is reconfigured so that the capacitor is in series with the supply and the load. This doubles the voltage across the load - the sum of the original supply and the capacitor voltages. The pulsing nature of the higher voltage switched output is often smoothed by the use of an output capacitor.

An external or secondary circuit drives the switching, typically at tens of kilohertz up to several megahertz. The high frequency minimizes the amount of capacitance required, as less charge needs to be stored and dumped in a shorter cycle.

Charge pumps can double voltages, triple voltages, halve voltages, invert voltages, fractionally multiply or scale voltages (such as ×32, ×43, ×23, etc.) and generate arbitrary voltages by quickly alternating between modes, depending on the controller and circuit topology.

They are commonly used in low-power electronics (such as mobile phones) to raise and lower voltages for different parts of the circuitry - minimizing power consumption by controlling supply voltages carefully.

Terminology for PLL

The term charge pump is also commonly used in phase-locked loop (PLL) circuits even though there is no pumping action involved unlike in the circuit discussed above. A PLL charge pump is merely a bipolar switched current source. This means that it can output positive and negative current pulses into the loop filter of the PLL. It cannot produce higher or lower voltages than its power and ground supply levels.

Applications

See also

References

  1. ^ Jenne, F. "Substrate Bias Circuit", US Patent 3794862A, Feb 26, 1974.
  2. ^ Kevin Horton. Colordreams Revision C. Last modified 2007-09-30. Accessed 2011-09-15.
  3. ^ Release, Press (25 July 2022). "Smartphones - 2:1 Charge Pump Direct Charger". Power Electronics News.
  4. ^ "OPPO 超级闪充四大技术全面突破,布局多终端、多场景闪充生态 | OPPO 官方网站". OPPO (in Chinese (China)).
  5. ^ K., Balakumar (1 March 2022). "Oppo claims new levels in fast charging through 240W SUPERVOOC - We explain it". TechRadar.

Applying the equivalent resistor concept to calculating the power losses in the charge pumps

Charge pumps where the voltages across the capacitors follow the binary number system

  • Ueno, F.; Inoue, T.; Oota, I. (1986). "Realization of a new switched-capacitor transformer with a step-up transformer ratio 2n–1 using n capacitors". IEEE International Symposium on Circuits and Systems (ISCAS). pp. 805–8.
  • Starzyk, J.A.; Ying-Wei Jan; Fengjing Qiu (March 2001). "A DC-DC charge pump design based on voltage doublers". IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications. 48 (3): 350–9. doi:10.1109/81.915390.
  • Fang Lin Luo; Hong Ye (June 2004). "Positive output multiple-lift push-pull switched-capacitor Luo-converters". IEEE Transactions on Industrial Electronics. 51 (3): 594–602. doi:10.1109/TIE.2004.825344. S2CID 22202569.
  • Ben-Yaakov, S.; Kushnerov, A. (2009). "Algebraic foundation of self adjusting Switched Capacitors Converters". 2009 IEEE Energy Conversion Congress and Exposition. pp. 1582–9. doi:10.1109/ECCE.2009.5316143. ISBN 978-1-4244-2893-9. S2CID 12915415.
  • Allasasmeh, Y.; Gregori, S. (November 2018). "High-performance switched-capacitor boost-buck integrated power converters". IEEE Transactions on Circuits and Systems I: Regular Papers. 65 (11): 3970–3983. doi:10.1109/TCSI.2018.2863239. ISSN 1558-0806. S2CID 52932169.
This article's use of external links may not follow Wikipedia's policies or guidelines. Please improve this article by removing excessive or inappropriate external links, and converting useful links where appropriate into footnote references. (September 2018) (Learn how and when to remove this template message)