This article has multiple issues. Please help improve it or discuss these issues on the talk page. (Learn how and when to remove these template messages) This article may be too technical for most readers to understand. Please help improve it to make it understandable to non-experts, without removing the technical details. (February 2022) (Learn how and when to remove this message) This article relies largely or entirely on a single source. Relevant discussion may be found on the talk page. Please help improve this article by introducing citations to additional sources.Find sources: "Empirical orthogonal functions" – news · newspapers · books · scholar · JSTOR (February 2022) (Learn how and when to remove this message)

In statistics and signal processing, the method of empirical orthogonal function (EOF) analysis is a decomposition of a signal or data set in terms of orthogonal basis functions which are determined from the data. The term is also interchangeable with the geographically weighted Principal components analysis in geophysics.[1]

The i th basis function is chosen to be orthogonal to the basis functions from the first through i − 1, and to minimize the residual variance. That is, the basis functions are chosen to be different from each other, and to account for as much variance as possible.

The method of EOF analysis is similar in spirit to harmonic analysis, but harmonic analysis typically uses predetermined orthogonal functions, for example, sine and cosine functions at fixed frequencies. In some cases the two methods may yield essentially the same results.

The basis functions are typically found by computing the eigenvectors of the covariance matrix of the data set. A more advanced technique is to form a kernel out of the data, using a fixed kernel. The basis functions from the eigenvectors of the kernel matrix are thus non-linear in the location of the data (see Mercer's theorem and the kernel trick for more information).

See also

References and notes

  1. ^ Stephenson, David B.; Benestad, Rasmus E. (2000-09-02). "Empirical Orthogonal Function analysis". Environmental statistics for climate researchers. Retrieved 2013-02-28.

Further reading