This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Fishfinder" – news · newspapers · books · scholar · JSTOR (November 2011) (Learn how and when to remove this template message)
Cabin display of a commercial or oceanographic fathometer sonar
Fathometer sonar

A fishfinder, also called a sounder in Australia, uses sonar to locate fish underwater.  It operates by emitting sound waves into the water and detecting the reflected echoes, which indicate the presence of fish, underwater terrain, and other objects. These sound reflections are visualized in detail by the advanced graphical displays equipped in modern fishfinders, enabling users to identify schools of fish, underwater debris, and the contours of the waterbed.

Due to their effectiveness in enhancing fish detection capabilities, fishfinders are extensively used in both recreational (sport) and commercial fishing. The evolution of fishfinder technology has led to significant integration with other marine electronic systems. Contemporary models often incorporate connections with marine radar, compasses, and GPS navigation systems, creating a comprehensive suite of tools for maritime navigation and fishing activities.


Fishfinders evolved from fathometers, which are specialized types of active sonar instruments originally designed for navigation and ensuring maritime safety by determining water depth. The term "fathometer" is derived from "fathom," a unit of measurement traditionally used to express water depths. Fathometers function as echo sounding systems, capable of measuring and displaying the depth of water, often recording these measurements permanently.

Over time, the technology used in fathometers was adapted and refined to create fishfinders. While both devices operate on similar principles—using sound waves to detect objects underwater—they differ in their primary functions. Fathometers are primarily focused on measuring the depth of the water column, whereas fishfinders are designed to locate fish and other underwater objects. Due to the similarities in their operation, which includes the use of comparable frequencies and the ability to detect both the water bottom and fish, these instruments have gradually converged in functionality. Modern devices often combine features of both, offering users the ability to gauge water depth while also detecting aquatic life.

Operating theory

In operation, an electrical impulse from a transmitter is converted into a sound wave by an underwater transducer, called a hydrophone, and sent into the water.[1] When the wave strikes something such as a fish, it is reflected back and displays size, composition, and shape of the object. The exact extent of what can be discerned depends on the frequency and power of the pulse transmitted. Knowing the speed of the wave in the water, the distance to the object that reflected the wave can be determined. The speed of sound through the water column depends on the temperature, salinity and pressure (depth). This is approximately c = 1404.85 + 4.618T - 0.0523T2 + 1.25S + 0.017D (where c = sound speed (m/s), T = temperature (degrees Celsius), S = salinity (per mille) and D = depth).[2] Typical values used by commercial fish finders are 4921 ft/s (1500 m/s) in seawater and 4800 ft/s (1463 m/s) in freshwater.

The process can be repeated up to 40 times per second and eventually results in the bottom of the ocean being displayed versus time (the fathometer function that eventually spawned the sporting use of fishfinding).

The temperature and pressure sensitivity capability of fish finder units allow one to identify the exact location of the fish in the water by the use of a temperature gauge. Functionality present in many modern fish finders also have track back capabilities in order to check the changes in movement in order to switch position and location whilst fishing.

It is easy to get more detail at screen when the frequency of fish finder is high. Deep-sea trawlers and commercial fishermen normally use low-frequency which is in between 50-200 kHz where modern fish finders have multiple frequencies to view split screen results.

General interpretation

Display of a consumer type fishfinder
Sonar image of a white bass feeding frenzy

The image above, at right, clearly shows the bottom structure—plants, sediments and hard bottom are discernible on sonar plots of sufficiently high power and appropriate frequency. Slightly more than halfway up from the bottom to the left of the screen centre and about a third away from the left side, this image is also displaying a fish – a light spot just to the right of a 'glare' splash from the camera's flashbulb. The X-axis of the image represents time, oldest (and behind the soundhead) to the left, most recent bottom (and current location) on the right; thus the fish is now well behind the transducer, and the vessel is now passing over a dip in the ocean floor or has just left it behind. The resulting distortion depends on both the speed of the vessel and how often the image is updated by the echo sounder.

Fish arches

With the Fish Symbol feature disabled, an angler can learn to distinguish between fish, vegetation, schools of baitfish or forage fish, debris, etc. Fish will usually appear on the screen as an arch. This is because the distance between the fish and the transducer changes as the boat passes over the fish (or the fish swims under the boat). When the fish enters the leading edge of the sonar beam, a display pixel is turned on. As the fish swims toward the centre of the beam, the distance to the fish decreases, turning on pixels at shallower depths. When the fish swims directly under the transducer, it is closer to the boat so the stronger signal shows a thicker line. As the fish swims away from the transducer, the distance increases, which shows as progressively deeper pixels.

The image to the right shows a school of white bass aggressively feeding on a school of threadfin shad. Note the school of baitfish near the bottom. When threatened, baitfish form a tightly packed school, as the individuals seek safety in the center of the school. This typically looks like an irregularly shaped ball or thumbprint on the fishfinder screen. When no predators are nearby, a school of baitfish frequently appears as a thin horizontal line across the screen, at the depth where the temperature and oxygen levels are optimal. The nearly-vertical lines near the right edge of the screen show the path of fishing lures falling to the bottom.

General history in sporting and fishing

The first fishfinder that was marketed for consumers in America that was meant for recreational fishing was the Lowrance Fish Lo-K-Tor (also nicknamed "The Little Green Box") which was invented in 1957 and entered market in 1959.[3][4][5] It was not the first fishfinder, ie. sonar device meant to find underwater fish or schools of fish, as in 1948 in Japan the Furuno brothers introduced a fishfinder for use in commercial fishing vessels; this Furuno Fish Finder is said to be the world's first practical fishfinder.[6] The Fish Lo-K-Tor's operation was as described below (neon lamp readout device etc.).

By the early 1970s, a common pattern of depth finder used an ultrasonic transducer immersed in water, and an electromechanical readout device. A neon lamp mounted on the end of an arm was rotated around a circular scale at a fixed speed by a small electric motor. The circular scale was calibrated in terms of depth of water. The instrument was arranged to send out a pulse of ultrasonic waves as the lamp passed the zero point of the scale. The transducer was then arranged to detect any reflected ultrasound impulses; the lamp would flash when an echo returned to the transducer, and by its position on the scale would indicate the elapsed time and therefore the depth of the water.[7] These also gave a small flickering flash for echos off of fish. Like today's low-end digital fathometers, they kept no record of the depth over time and provided no information about bottom structure. They had poor accuracy, especially in rough water, and were hard to read in bright light. Despite the limitations, they were still usable for rough estimates of depth, such as for verifying that the boat had not drifted into an unsafe area.

Eventually, CRTs were married with a fathometer for commercial fishing and the fishfinder was born. With the advent of large LCD arrays, the high power requirements of a CRT gave way to the LCD in the early 1990s and fishfinding fathometers reached the sporting markets. Nowadays, many fishfinders available for hobby fishers have color LCD screens, built-in GPS, charting capabilities, and come bundled with transducers. Today, sporting fishfinders lack only the permanent record of the big ship navigational fathometer, and that is available in high end units that can use the ubiquitous computer to store that record as well.

Fishfinders may use higher frequencies to improve the image of underwater objects.[8] Side-looking transducers provide additional visibility of underwater objects on either side of the boat's path. [9]

Commercial and naval units

Commercial and naval fathometers of yesteryear used a strip chart recorder where an advancing roll of paper was marked by a stylus to make a permanent copy of the depth, usually with some means of also recording time (Each mark or time 'tic' is proportional to distance traveled) so that the strip charts could be readily compared to navigation charts and maneuvering logs (speed changes). Much of the world's ocean depths have been mapped using such recording strips. Fathometers of this type usually offered multiple (chart advance) speed settings, and sometimes, multiple frequencies as well. (Deep Ocean—Low Frequency carries better, Shallows—high frequency shows smaller structures (like fish, submerged reefs, wrecks, or other bottom composition features of interest.) At high frequency settings, high chart speeds, such fathometers give a picture of the bottom and any intervening large or schooling fish that can be related to position. Fathometers of the constant recording type are still mandated for all large vessels (100+ tons displacement) in restricted waters (i.e. generally, within 15 miles (24 km) of land).

The Furuno Fish Finder (the original from 1948) is said to be the world's first practical fishfinder; it was introduced by the Furuno brothers for use in commercial fishing vessels in 1948 in Japan.[6]

See also


  1. ^ Editing Board. "Fish-finder". Encyclopædia Britannica. Retrieved 4 July 2016.
  2. ^ Jackson, Darrell; Richardson, Michael (2007). High-frequency seafloor acoustics (1. ed.). New York: Springer. p. 458. ISBN 978-0387369457.
  3. ^ "Lowrance's Fish-Lo-K-Tor, the good old days?". 13 March 2006.
  4. ^ "About Lowrance Electronics | Lowrance".
  5. ^ "60 Years of Lowrance".
  6. ^ a b "Fish Finders Point the Way for Future Fishing | April 2018 | Highlighting Japan".
  7. ^ Conrad Miller, "Black Box Boating - Electronics For Power and Sail",Motor Boating, May 1970, page
  8. ^ "Answers to Your Top Fish Finder Questions". Sport Fishing Magazine. 17 April 2018. Retrieved 2020-05-23.
  9. ^ Neuman, Scott (26 September 2013). "What's Lurking In Your Lake? Sonar Turns Up Startling Finds". Retrieved 2020-05-23.


  1. ^ Gary Burrell (2023-08-11). "Top-Rated Garmin Fish Finders Reviewed". Garmin Fish Finders. Retrieved 2024-01-22.