Generation | IEEE standard |
Adopted | Maximum link rate (Mb/s) |
Radio frequency (GHz) |
---|---|---|---|---|
Wi-Fi 8 | 802.11bn | expected 2028[1] | 100 000[2] | 2.4, 5, 6[3] |
Wi-Fi 7 | 802.11be | expected 2024 | 0.4–23 059 | 2.4, 5, 6[4] |
Wi-Fi 6E | 802.11ax | 2021 | 0.4–9608[5] | 2.4, 5, 6[a] |
Wi-Fi 6 | 2.4, 5 | |||
Wi-Fi 5 | 802.11ac | 2013 | 6.5–6933 | 5[b] |
Wi-Fi 4 | 802.11n | 2009 | 6.5–600 | 2.4, 5 |
(Wi-Fi 3*) | 802.11g | 2003 | 6–54 | 2.4 |
(Wi-Fi 2*) | 802.11a | 1999 | 5 | |
(Wi-Fi 1*) | 802.11b | 1999 | 1–11 | 2.4 |
(Wi-Fi 0*) | 802.11 | 1997 | 1–2 | 2.4 |
*Wi‑Fi 0, 1, 2, and 3 are named by retroactive inference. They do not exist in the official nomenclature.[6][7][8] |
IEEE 802.11g-2003 or 802.11g is an amendment to the IEEE 802.11 specification that operates in the 2.4 GHz microwave band. The standard has extended link rate to up to 54 Mbit/s using the same 20 MHz bandwidth as 802.11b uses to achieve 11 Mbit/s. This specification, under the marketing name of Wi‑Fi, has been implemented all over the world. The 802.11g protocol is now Clause 19 of the published IEEE 802.11-2007 standard, and Clause 19 of the published IEEE 802.11-2012 standard.
802.11 is a set of IEEE standards that govern wireless networking transmission methods. They are commonly used today in their 802.11a, 802.11b, 802.11g, 802.11n, 802.11ac and 802.11ax versions to provide wireless connectivity in the home, office and some commercial establishments.
802.11g is fully backward compatible with 802.11b, but coexistence of the two methods creates a significant performance penalty.
802.11g is the third modulation standard for wireless LANs. It works in the 2.4 GHz band (like 802.11b) but operates at a maximum raw data rate of 54 Mbit/s. Using the CSMA/CA transmission scheme, 31.4 Mbit/s[9] is the maximum net throughput possible for packets of 1500 bytes in size and a 54 Mbit/s wireless rate (identical to 802.11a core, except for some additional legacy overhead for backward compatibility). In practice, access points may not have an ideal implementation and may therefore not be able to achieve even 31.4 Mbit/s throughput with 1500 byte packets. 1500 bytes is the usual limit for packets on the Internet and therefore a relevant size to benchmark against. Smaller packets give even lower theoretical throughput, down to 3 Mbit/s using 54 Mbit/s rate and 64 byte packets.[9] Also, the available throughput is shared between all stations transmitting, including the AP so both downstream and upstream traffic is limited to a shared total of 31.4 Mbit/s using 1500 byte packets and 54 Mbit/s rate.
802.11g hardware is fully backward compatible with 802.11b hardware. Details of making b and g work well together occupied much of the lingering technical process. In an 802.11g network, however, the presence of a legacy 802.11b participant will significantly reduce the speed of the overall 802.11g network, as airtime needs to be managed by RTS/CTS transmissions and a "back off" mechanism.[10] Some 802.11g routers employ a back-compatible mode for 802.11b clients called 54g LRS (Limited Rate Support).[11]
The modulation scheme used in 802.11g is orthogonal frequency-division multiplexing (OFDM) copied from 802.11a with data rates of 6, 9, 12, 18, 24, 36, 48, and 54 Mbit/s, and reverts to CCK (like the 802.11b standard) for 5.5 and 11 Mbit/s and DBPSK/DQPSK+DSSS for 1 and 2 Mbit/s. Even though 802.11g operates in the same frequency band as 802.11b, it can achieve higher data rates because of its better modulation from 802.11a.
Of the 52 OFDM subcarriers, 48 are for data and 4 are pilot subcarriers with a carrier separation of 0.3125 MHz (20 MHz/64). Each of these subcarriers can be a BPSK, QPSK, 16-QAM or 64-QAM. The total bandwidth is 22 MHz with an occupied bandwidth of 16.6 MHz. Symbol duration is 4 microseconds, which includes a guard interval of 0.8 microseconds. The actual generation and decoding of orthogonal components is done in baseband using DSP which is then upconverted to 2.4 GHz at the transmitter. Each of the subcarriers could be represented as a complex number. The time domain signal is generated by taking an Inverse Fast Fourier transform (IFFT). Correspondingly the receiver downconverts, samples at 20 MHz and does an FFT to retrieve the original coefficients. The advantages of using OFDM include reduced multipath effects in reception and increased spectral efficiency.[12]
MCS index(read as little endian) | RATE bits R1-R4 | Modulation type |
Coding rate |
Data rate (Mbit/s) |
---|---|---|---|---|
11 | 1101 | BPSK | 1/2 | 6 |
15 | 1111 | BPSK | 3/4 | 9 |
10 | 0101 | QPSK | 1/2 | 12 |
14 | 0111 | QPSK | 3/4 | 18 |
9 | 1001 | 16-QAM | 1/2 | 24 |
13 | 1011 | 16-QAM | 3/4 | 36 |
8 | 0001 | 64-QAM | 2/3 | 48 |
12 | 0011 | 64-QAM | 3/4 | 54 |
The then-proposed 802.11g standard was rapidly adopted by consumers starting in January 2003, well before ratification, due to the desire for higher speeds and reductions in manufacturing costs. By mid-2003, most dual-band 802.11a/b products became dual-band/tri-mode, supporting a and b/g in a single mobile adapter card or access point. [citation needed]
Despite its major acceptance, 802.11g suffers from the same interference as 802.11b in the already crowded 2.4 GHz range. Devices operating in this range include microwave ovens, Bluetooth devices, baby monitors, and digital cordless telephones, which can lead to interference issues. Additionally, the success of the standard has caused usage/density problems related to crowding in urban areas. To prevent interference, there are only three non-overlapping usable channels in the U.S. and other countries with similar regulations (channels 1, 6, 11, with 25 MHz separation), and four in Europe (channels 1, 5, 9, 13, with only 20 MHz separation). Even with such separation, some interference due to side lobes exists, though it is considerably weaker.
Channel | Center frequency (GHz) |
Span (GHz) |
Overlapping channels |
---|---|---|---|
1 | 2.412 | 2.401–2.423 | 2, 3, 4, 5* |
2 | 2.417 | 2.406–2.428 | 1, 3, 4, 5, 6* |
3 | 2.422 | 2.411–2.433 | 1, 2, 4, 5, 6, 7* |
4 | 2.427 | 2.416–2.438 | 1, 2, 3, 5, 6, 7, 8* |
5 | 2.432 | 2.421–2.443 | 1*, 2, 3, 4, 6, 7, 8, 9* |
6 | 2.437 | 2.426–2.448 | 2*, 3, 4, 5, 7, 8, 9, 10* |
7 | 2.442 | 2.431–2.453 | 3*, 4, 5, 6, 8, 9, 10, 11* |
8 | 2.447 | 2.436–2.458 | 4*, 5, 6, 7, 9, 10, 11, 12* |
9 | 2.452 | 2.441–2.463 | 5*, 6, 7, 8, 10, 11, 12, 13* |
10 | 2.457 | 2.446–2.468 | 6*, 7, 8, 9, 11, 12, 13* |
11 | 2.462 | 2.451–2.473 | 7*, 8, 9, 10, 12, 13* |
12 | 2.467 | 2.456–2.478 | 8*, 9, 10, 11, 13, 14* |
13 | 2.472 | 2.461–2.483 | 9*, 10, 11, 12, 14* |
14 | 2.484 | 2.473–2.495 | 12, 13 |
Notes:
Click on "show".
Frequency range, or type |
PHY | Protocol | Release date [15] |
Frequency | Bandwidth | Stream data rate [16] |
Allowable MIMO streams |
Modulation | Approximate range | |||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Indoor | Outdoor | |||||||||||
(GHz) | (MHz) | (Mbit/s) | ||||||||||
1–7 GHz | DSSS[17], |
802.11-1997 | June 1997 | 2.4 | 22 | 1, 2 | — | DSSS, |
20 m (66 ft) | 100 m (330 ft) | ||
HR/DSSS [17] | 802.11b | September 1999 | 2.4 | 22 | 1, 2, 5.5, 11 | — | CCK, DSSS | 35 m (115 ft) | 140 m (460 ft) | |||
OFDM | 802.11a | September 1999 | 5 | 5, 10, 20 | 6, 9, 12, 18, 24, 36, 48, 54 (for 20 MHz bandwidth, divide by 2 and 4 for 10 and 5 MHz) |
— | OFDM | 35 m (115 ft) | 120 m (390 ft) | |||
802.11j | November 2004 | 4.9, 5.0 [B][18] |
? | ? | ||||||||
802.11y | November 2008 | 3.7 [C] | ? | 5,000 m (16,000 ft)[C] | ||||||||
802.11p | July 2010 | 5.9 | 200 m | 1,000 m (3,300 ft)[19] | ||||||||
802.11bd | December 2022 | 5.9, 60 | 500 m | 1,000 m (3,300 ft) | ||||||||
ERP-OFDM[20] | 802.11g | June 2003 | 2.4 | 38 m (125 ft) | 140 m (460 ft) | |||||||
HT-OFDM [21] | 802.11n (Wi-Fi 4) |
October 2009 | 2.4, 5 | 20 | Up to 288.8[D] | 4 | MIMO-OFDM (64-QAM) |
70 m (230 ft) | 250 m (820 ft)[22] | |||
40 | Up to 600[D] | |||||||||||
VHT-OFDM [21] | 802.11ac (Wi-Fi 5) |
December 2013 | 5 | 20 | Up to 693[D] | 8 | DL MU-MIMO OFDM (256-QAM) |
35 m (115 ft)[23] | ? | |||
40 | Up to 1600[D] | |||||||||||
80 | Up to 3467[D] | |||||||||||
160 | Up to 6933[D] | |||||||||||
HE-OFDMA | 802.11ax (Wi-Fi 6, Wi-Fi 6E) |
May 2021 | 2.4, 5, 6 | 20 | Up to 1147[E] | 8 | UL/DL MU-MIMO OFDMA (1024-QAM) |
30 m (98 ft) | 120 m (390 ft) [F] | |||
40 | Up to 2294[E] | |||||||||||
80 | Up to 5.5 Gbit/s[E] | |||||||||||
80+80 | Up to 11.0 Gbit/s[E] | |||||||||||
EHT-OFDMA | 802.11be (Wi-Fi 7) |
Dec 2024 (est.) |
2.4, 5, 6 | 80 | Up to 11.5 Gbit/s[E] | 16 | UL/DL MU-MIMO OFDMA (4096-QAM) |
30 m (98 ft) | 120 m (390 ft) [F] | |||
160 (80+80) |
Up to 23 Gbit/s[E] | |||||||||||
240 (160+80) |
Up to 35 Gbit/s[E] | |||||||||||
320 (160+160) |
Up to 46.1 Gbit/s[E] | |||||||||||
UHR | 802.11bn (Wi-Fi 8) |
May 2028 (est.) |
2.4, 5, 6, 42, 60, 71 |
320 | Up to 100000 (100 Gbit/s) |
16 | Multi-link MU-MIMO OFDM (8192-QAM) |
? | ? | |||
WUR [G] | 802.11ba | October 2021 | 2.4, 5 | 4, 20 | 0.0625, 0.25 (62.5 kbit/s, 250 kbit/s) |
— | OOK (multi-carrier OOK) | ? | ? | |||
mmWave (WiGig) |
DMG [24] | 802.11ad | December 2012 | 60 | 2160 (2.16 GHz) |
Up to 8085[25] (8 Gbit/s) |
— | 3.3 m (11 ft)[26] | ? | |||
802.11aj | April 2018 | 60 [H] | 1080[27] | Up to 3754 (3.75 Gbit/s) |
— | single carrier, low-power single carrier[A] | ? | ? | ||||
CMMG | 802.11aj | April 2018 | 45 [H] | 540, 1080 |
Up to 15015[28] (15 Gbit/s) |
4 [29] | OFDM, single carrier | ? | ? | |||
EDMG [30] | 802.11ay | July 2021 | 60 | Up to 8640 (8.64 GHz) |
Up to 303336[31] (303 Gbit/s) |
8 | OFDM, single carrier | 10 m (33 ft) | 100 m (328 ft) | |||
Sub 1 GHz (IoT) | TVHT [32] | 802.11af | February 2014 | 0.054– 0.79 |
6, 7, 8 | Up to 568.9[33] | 4 | MIMO-OFDM | ? | ? | ||
S1G [32] | 802.11ah | May 2017 | 0.7, 0.8, 0.9 |
1–16 | Up to 8.67[34] (@2 MHz) |
4 | ? | ? | ||||
Light (Li-Fi) |
LC (VLC/OWC) |
802.11bb | December 2023 (est.) |
800–1000 nm | 20 | Up to 9.6 Gbit/s | — | O-OFDM | ? | ? | ||
(IrDA) |
802.11-1997 | June 1997 | 850–900 nm | ? | 1, 2 | — | ? | ? | ||||
802.11 Standard rollups | ||||||||||||
802.11-2007 (802.11ma) | March 2007 | 2.4, 5 | Up to 54 | DSSS, OFDM | ||||||||
802.11-2012 (802.11mb) | March 2012 | 2.4, 5 | Up to 150[D] | DSSS, OFDM | ||||||||
802.11-2016 (802.11mc) | December 2016 | 2.4, 5, 60 | Up to 866.7 or 6757[D] | DSSS, OFDM | ||||||||
802.11-2020 (802.11md) | December 2020 | 2.4, 5, 60 | Up to 866.7 or 6757[D] | DSSS, OFDM | ||||||||
802.11me | September 2024 (est.) |
2.4, 5, 6, 60 | Up to 9608 or 303336 | DSSS, OFDM | ||||||||
|
54g LRS (Limited Rate Support) is intended to support "legacy" (802.11b) clients that can't deal with access points which advertise supported rates in their beacon frames other than the original 802.11's 1 and 2 Mbps rates. [...] 54g™ protection: If you set this option as Automatic, the router will use RTS/CTS to improve the 802.11g performance in 802.11 mixed environments.
Current | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
802 series |
| ||||||||||
Proposed | |||||||||||
Superseded | |||||||||||