JASP
JASP logo.svg
Stable release
0.16.2 / April 19, 2022 (2022-04-19)
RepositoryJASP Github page
Written inC++, R, JavaScript
Operating systemMicrosoft Windows, Mac OS X and Linux
TypeStatistics
LicenseGNU Affero General Public License
Websitejasp-stats.org

JASP (Jeffreys’s Amazing Statistics Program[1]) is a free and open-source program for statistical analysis supported by the University of Amsterdam. It is designed to be easy to use, and familiar to users of SPSS. It offers standard analysis procedures in both their classical and Bayesian form.[2][3] JASP generally produces APA style results tables and plots to ease publication. It promotes open science by integration with the Open Science Framework and reproducibility by integrating the analysis settings into the results. The development of JASP is financially supported by several universities and research funds.

JASP screenshot
JASP screenshot

Analyses

JASP offers frequentist inference and Bayesian inference on the same statistical models. Frequentist inference uses p-values and confidence intervals to control error rates in the limit of infinite perfect replications. Bayesian inference uses credible intervals and Bayes factors[4][5] to estimate credible parameter values and model evidence given the available data and prior knowledge.

The following analyses are available in JASP:

Analysis Frequentist Bayesian
A/B test checkY
ANOVA, ANCOVA, Repeated measures ANOVA and MANOVA checkY checkY
Audit checkY checkY
Bain checkY checkY
Binomial test checkY checkY
Confirmatory factor analysis (CFA) checkY
Contingency tables (including Chi-squared test) checkY checkY
Correlation:[6] Pearson, Spearman, and Kendall checkY checkY
Equivalence T-Tests: Independent, Paired, One-Sample checkY
Exploratory factor analysis (EFA) checkY
Linear regression checkY checkY
Logistic regression checkY
Log-linear regression checkY checkY
Machine Learning checkY
Mann-Whitney U and Wilcoxon checkY checkY
Mediation Analysis checkY
Meta Analysis checkY checkY
Mixed Models checkY checkY
Multinomial test checkY checkY
Network Analysis checkY
Principal component analysis (PCA) checkY
Reliability analyses: α, γδ, and ω checkY checkY
Structural equation modeling (SEM) checkY
Summary Stats[7] checkY
T-tests: independent, paired, one-sample checkY checkY
Visual Modeling: Linear, Mixed, Generalized Linear checkY

Other features

Modules

  1. Audit: Planning, selection and evaluation of statistical audit samples.
  2. Summary statistics: Bayesian inference from frequentist summary statistics for t-test, regression, and binomial tests.
  3. Bain: Bayesian informative hypotheses evaluation[8] for t-test, ANOVA, ANCOVA and linear regression.
  4. Network: Network Analysis allows the user to analyze the network structure of variables.
  5. Meta Analysis: Includes techniques for fixed and random effects analysis, fixed and mixed effects meta-regression, forest and funnel plots, tests for funnel plot asymmetry, trim-and-fill and fail-safe N analysis.
  6. Machine Learning: The machine Learning module contains 19 analyses for supervised an unsupervised learning:
  7. SEM: Structural equation modeling.[9]
  8. JAGS module
  9. Discover distributions
  10. Equivalence testing
  11. Cochrane meta-analyses

References

  1. ^ "FAQ - JASP". JASP. Retrieved 18 February 2022.
  2. ^ Wagenmakers EJ, Love J, Marsman M, Jamil T, Ly A, Verhagen J, et al. (February 2018). "Bayesian inference for psychology. Part II: Example applications with JASP". Psychonomic Bulletin & Review. 25 (1): 58–76. doi:10.3758/s13423-017-1323-7. PMC 5862926. PMID 28685272.
  3. ^ Love J, Selker R, Verhagen J, Marsman M, Gronau QF, Jamil T, Smira M, Epskamp S, Wil A, Ly A, Matzke D, Wagenmakers EJ, Morey MD, Rouder JN (2015). "Software to Sharpen Your Stats". APS Observer. 28 (3).
  4. ^ Quintana DS, Williams DR (June 2018). "Bayesian alternatives for common null-hypothesis significance tests in psychiatry: a non-technical guide using JASP". BMC Psychiatry. 18 (1): 178. doi:10.1186/s12888-018-1761-4. PMC 5991426. PMID 29879931.
  5. ^ Brydges CR, Gaeta L (December 2019). "An Introduction to Calculating Bayes Factors in JASP for Speech, Language, and Hearing Research". Journal of Speech, Language, and Hearing Research. 62 (12): 4523–4533. doi:10.1044/2019_JSLHR-H-19-0183. PMID 31830850. S2CID 209342577.
  6. ^ Nuzzo RL (December 2017). "An Introduction to Bayesian Data Analysis for Correlations". PM&R. 9 (12): 1278–1282. doi:10.1016/j.pmrj.2017.11.003. PMID 29274678.
  7. ^ Ly A, Raj A, Etz A, Marsman M, Gronau QF, Wagenmakers E (2017-05-30). "Bayesian Reanalyses from Summary Statistics: A Guide for Academic Consumers". Open Science Framework.
  8. ^ Gu, Xin; Mulder, Joris; Hoijtink, Herbert (2018). "Approximated adjusted fractional Bayes factors: A general method for testing informative hypotheses". British Journal of Mathematical and Statistical Psychology. 71 (2): 229–261. doi:10.1111/bmsp.12110. ISSN 2044-8317. PMID 28857129.
  9. ^ Kline, Rex B. (2015-11-03). Principles and Practice of Structural Equation Modeling, Fourth Edition. Guilford Publications. ISBN 9781462523351.