In computer science, partial application (or partial function application) refers to the process of fixing a number of arguments to a function, producing another function of smaller arity. Given a function , we might fix (or 'bind') the first argument, producing a function of type . Evaluation of this function might be represented as . Note that the result of partial function application in this case is a function that takes two arguments. Partial application is sometimes incorrectly called currying, which is a related, but distinct concept.
Intuitively, partial function application says "if you fix the first arguments of the function, you get a function of the remaining arguments". For example, if function div(x,y) = x/y, then div with the parameter x fixed at 1 is another function: div1(y) = div(1,y) = 1/y. This is the same as the function inv that returns the multiplicative inverse of its argument, defined by inv(y) = 1/y.
The practical motivation for partial application is that very often the functions obtained by supplying some but not all of the arguments to a function are useful; for example, many languages have a function or operator similar to plus_one
. Partial application makes it easy to define these functions, for example by creating a function that represents the addition operator with 1 bound as its first argument.
In languages such as ML, Haskell and F#, functions are defined in curried form by default. Supplying fewer than the total number of arguments is referred to as partial application.
In languages with first-class functions, one can define curry
, uncurry
and papply
to perform currying and partial application explicitly. This might incur a greater run-time overhead due to the creation of additional closures, while Haskell can use more efficient techniques.[1]
Scala implements optional partial application with placeholder, e.g. def add(x: Int, y: Int) = {x+y}; add(1, _: Int)
returns an incrementing function. Scala also supports multiple parameter lists as currying, e.g. def add(x: Int)(y: Int) = {x+y}; add(1) _
.
Clojure implements partial application using the partial
function defined in its core library.[2]
The C++ standard library provides bind(function, args..)
to return a function object that is the result of partial application of the given arguments to the given function. Alternatively, lambda expressions can be used:
int f(int a, int b);
auto f_partial = [](int a) { return f(a, 123); };
assert(f_partial(456) == f(456, 123) );
In Java, MethodHandle.bindTo
partially applies a function to its first argument.[3]
Alternatively, since Java 8, lambdas can be used:
public static <A, B, R> Function<B, R> partialApply(BiFunction<A, B, R> biFunc, A value) {
return b -> biFunc.apply(value, b);
}
In Raku, the assuming
method creates a new function with fewer parameters.[4]
The Python standard library module functools
includes the partial
function, allowing positional and named argument bindings, returning a new function.[5]
In XQuery, an argument placeholder (?
) is used for each non-fixed argument in a partial function application.[6]
In the simply-typed lambda calculus with function and product types (λ→,×) partial application, currying and uncurrying can be defined as
papply
curry
uncurry
Note that curry
papply
= curry
.
Partial application can be a useful way to define several useful notions in mathematics.
Given sets and , and a function , one can define the function
where is the set of functions . The image of under this map is . This is the function which sends to . There are often structures on which mean that the image of restricts to some subset of functions , as illustrated in the following examples.
A group action can be understood as a function . The partial evaluation restricts to the group of bijections from to itself. The group action axioms further ensure is a group homomorphism.
An inner-product on a vector space over a field is a map . The partial evaluation provides a canonical map to the dual vector space, . If this is the inner-product of a Hilbert space, the Riesz representation theorem ensures this is an isomorphism.
The partial application of the cross product on is . The image of the vector is a linear map such that . The components of can be found to be .
This is closely related to the adjoint map for Lie algebras. Lie algebras are equipped with a bracket . The partial application gives a map . The axioms for the bracket ensure this map is a homomorphism of Lie algebras.