Guido van Rossum began working on Python in the late 1980s as a successor to the ABC programming language and first released it in 1991 as Python 0.9.0.[35] Python 2.0 was released in 2000. Python 3.0, released in 2008, was a major revision not completely backward-compatible with earlier versions. Python 2.7.18, released in 2020, was the last release of Python 2.[36]
Python consistently ranks as one of the most popular programming languages.[37][38][39][40]
Python was conceived in the late 1980s[41] by Guido van Rossum at Centrum Wiskunde & Informatica (CWI) in the Netherlands as a successor to the ABC programming language, which was inspired by SETL,[42] capable of exception handling and interfacing with the Amoeba operating system.[11] Its implementation began in December 1989.[43] Van Rossum shouldered sole responsibility for the project, as the lead developer, until 12 July 2018, when he announced his "permanent vacation" from his responsibilities as Python's "benevolent dictator for life", a title the Python community bestowed upon him to reflect his long-term commitment as the project's chief decision-maker.[44] In January 2019, active Python core developers elected a five-member Steering Council to lead the project.[45][46]
Python 2.0 was released on 16 October 2000, with many major new features such as list comprehensions, cycle-detecting garbage collection, reference counting, and Unicode support.[47] Python 3.0, released on 3 December 2008, with many of its major features backported to Python 2.6.x[48] and 2.7.x. Releases of Python 3 include the 2to3 utility, which automates the translation of Python 2 code to Python 3.[49]
Python 2.7's end-of-life was initially set for 2015, then postponed to 2020 out of concern that a large body of existing code could not easily be forward-ported to Python 3.[50][51] No further security patches or other improvements will be released for it.[52][53] Currently only 3.8 and later are supported (2023 security issues were fixed in e.g. 3.7.17, the final 3.7.x release[54]).
In 2021 (and again twice in 2022), security updates were expedited, since all Python versions were insecure (including 2.7[55]) because of security issues leading to possible remote code execution[56] and web-cache poisoning.[57] In 2022, Python 3.10.4 and 3.9.12 were expedited[58] and 3.8.13, because of many security issues.[59] When Python 3.9.13 was released in May 2022, it was announced that the 3.9 series (joining the older series 3.8 and 3.7) would only receive security fixes in the future.[60] On 7 September 2022, four new releases were made due to a potential denial-of-service attack: 3.10.7, 3.9.14, 3.8.14, and 3.7.14.[61][62]
As of October 2023,[update] Python 3.12 is the stable release, and 3.12 and 3.11 are the only versions with active (as opposed to just security) support. Notable changes in 3.11 from 3.10 include increased program execution speed and improved error reporting.[63]
Python 3.12 adds syntax (and in fact every Python since at least 3.5 adds some syntax) to the language, the new (soft) keyword type (recent releases have added a lot of typing support e.g. new type union operator in 3.10), and 3.11 for exception handling, and 3.10 the match and case (soft) keywords, for structural pattern matching statements. Python 3.12 also drops outdated modules and functionality, and future versions will too, see below in Development section.
Python 3.11 claims to be between 10 and 60% faster than Python 3.10, and Python 3.12 adds another 5% on top of that. It also has improved error messages, and many other changes.
Since 27 June 2023[update], Python 3.8 is the oldest supported version of Python (albeit in the 'security support' phase), due to Python 3.7 reaching end-of-life.[64]
Its design offers some support for functional programming in the Lisp tradition. It has filter,mapandreduce functions; list comprehensions, dictionaries, sets, and generator expressions.[71] The standard library has two modules (itertools and functools) that implement functional tools borrowed from Haskell and Standard ML.[72]
Its core philosophy is summarized in the document The Zen of Python (PEP 20), which includes aphorisms such as:[73]
Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.
Complex is better than complicated.
Readability counts.
Rather than building all of its functionality into its core, Python was designed to be highly extensible via modules. This compact modularity has made it particularly popular as a means of adding programmable interfaces to existing applications. Van Rossum's vision of a small core language with a large standard library and easily extensible interpreter stemmed from his frustrations with ABC, which espoused the opposite approach.[41]
Python strives for a simpler, less-cluttered syntax and grammar while giving developers a choice in their coding methodology. In contrast to Perl's "there is more than one way to do it" motto, Python embraces a "there should be one—and preferably only one—obvious way to do it" philosophy.[73]Alex Martelli, a Fellow at the Python Software Foundation and Python book author, wrote: "To describe something as 'clever' is not considered a compliment in the Python culture."[74]
Python's developers strive to avoid premature optimization and reject patches to non-critical parts of the CPython reference implementation that would offer marginal increases in speed at the cost of clarity.[75] Execution speed can be improved by moving speed-critical functions to extension modules written in languages such as C, or by using a just-in-time compiler like PyPy. It is also possible to cross-compile to other languages, but it either doesn't provide the full speed-up that might be expected, since Python is a very dynamic language, or a restricted subset of Python is compiled, and possibly semantics are slightly changed.[76]
Python's developers aim for it to be fun to use. This is reflected in its name—a tribute to the British comedy group Monty Python[77]—and in occasionally playful approaches to tutorials and reference materials, such as the use of the terms "spam" and "eggs" (a reference to a Monty Python sketch) in examples, instead of the often-used "foo" and "bar".[78][79]
A common neologism in the Python community is pythonic, which has a wide range of meanings related to program style. "Pythonic" code may use Python idioms well, be natural or show fluency in the language, or conform with Python's minimalist philosophy and emphasis on readability. Code that is difficult to understand or reads like a rough transcription from another programming language is called unpythonic.[80][81]
Python is meant to be an easily readable language. Its formatting is visually uncluttered and often uses English keywords where other languages use punctuation. Unlike many other languages, it does not use curly brackets to delimit blocks, and semicolons after statements are allowed but rarely used. It has fewer syntactic exceptions and special cases than C or Pascal.[82]
Python uses whitespace indentation, rather than curly brackets or keywords, to delimit blocks. An increase in indentation comes after certain statements; a decrease in indentation signifies the end of the current block.[83] Thus, the program's visual structure accurately represents its semantic structure.[84] This feature is sometimes termed the off-side rule. Some other languages use indentation this way; but in most, indentation has no semantic meaning. The recommended indent size is four spaces.[85]
The assignment statement, using a single equals sign =
The if statement, which conditionally executes a block of code, along with else and elif (a contraction of else-if)
The for statement, which iterates over an iterable object, capturing each element to a local variable for use by the attached block
The while statement, which executes a block of code as long as its condition is true
The try statement, which allows exceptions raised in its attached code block to be caught and handled by except clauses (or new syntax except* in Python 3.11 for exception groups[86]); it also ensures that clean-up code in a finally block is always run regardless of how the block exits
The raise statement, used to raise a specified exception or re-raise a caught exception
The class statement, which executes a block of code and attaches its local namespace to a class, for use in object-oriented programming
The with statement, which encloses a code block within a context manager (for example, acquiring a lock before it is run, then releasing the lock; or opening and closing a file), allowing resource-acquisition-is-initialization (RAII)-like behavior and replacing a common try/finally idiom[87]
The continue statement, which skips the rest of the current iteration and continues with the next
The del statement, which removes a variable—deleting the reference from the name to the value, and producing an error if the variable is referred to before it is redefined
The pass statement, serving as a NOP, syntactically needed to create an empty code block
The assert statement, used in debugging to check for conditions that should apply
The yield statement, which returns a value from a generator function (and also an operator); used to implement coroutines
The return statement, used to return a value from a function
The import and from statements, used to import modules whose functions or variables can be used in the current program
The assignment statement (=) binds a name as a reference to a separate, dynamically allocated object. Variables may subsequently be rebound at any time to any object. In Python, a variable name is a generic reference holder without a fixed data type; however, it always refers to some object with a type. This is called dynamic typing—in contrast to statically-typed languages, where each variable may contain only a value of a certain type.
Python does not support tail call optimization or first-class continuations, and, according to Van Rossum, it never will.[88][89] However, better support for coroutine-like functionality is provided by extending Python's generators.[90] Before 2.5, generators were lazyiterators; data was passed unidirectionally out of the generator. From Python 2.5 on, it is possible to pass data back into a generator function; and from version 3.3, it can be passed through multiple stack levels.[91]
The +, -, and * operators for mathematical addition, subtraction, and multiplication are similar to other languages, but the behavior of division differs. There are two types of divisions in Python: floor division (or integer division) // and floating-point/division.[92] Python uses the ** operator for exponentiation.
Python uses the + operator for string concatenation. Python uses the * operator for duplicating a string a specified number of times.
The syntax :=, called the "walrus operator", was introduced in Python 3.8. It assigns values to variables as part of a larger expression.[95]
In Python, == compares by value. Python's is operator may be used to compare object identities (comparison by reference), and comparisons may be chained—for example, a<=b<=c.
Python uses and, or, and not as Boolean operators.
Python has a type of expression called a list comprehension, as well as a more general expression called a generator expression.[71]
Conditional expressions are written as xifcelsey[96] (different in order of operands from the c ? x : y operator common to many other languages).
Python makes a distinction between lists and tuples. Lists are written as [1,2,3], are mutable, and cannot be used as the keys of dictionaries (dictionary keys must be immutable in Python). Tuples, written as (1,2,3), are immutable and thus can be used as keys of dictionaries, provided all of the tuple's elements are immutable. The + operator can be used to concatenate two tuples, which does not directly modify their contents, but produces a new tuple containing the elements of both. Thus, given the variable t initially equal to (1,2,3), executing t=t+(4,5) first evaluates t+(4,5), which yields (1,2,3,4,5), which is then assigned back to t—thereby effectively "modifying the contents" of t while conforming to the immutable nature of tuple objects. Parentheses are optional for tuples in unambiguous contexts.[97]
Python features sequence unpacking where multiple expressions, each evaluating to anything that can be assigned (to a variable, writable property, etc.) are associated in an identical manner to that forming tuple literals—and, as a whole, are put on the left-hand side of the equal sign in an assignment statement. The statement expects an iterable object on the right-hand side of the equal sign that produces the same number of values as the provided writable expressions; when iterated through them, it assigns each of the produced values to the corresponding expression on the left.[98]
Python has a "string format" operator % that functions analogously to printf format strings in C—e.g. "spam=%s eggs=%d"%("blah",2) evaluates to "spam=blah eggs=2". In Python 2.6+ and 3+, this was supplemented by the format() method of the str class, e.g. "spam={0} eggs={1}".format("blah",2). Python 3.6 added "f-strings": spam="blah";eggs=2;f'spam={spam} eggs={eggs}'.[99]
Strings in Python can be concatenated by "adding" them (with the same operator as for adding integers and floats), e.g. "spam"+"eggs" returns "spameggs". If strings contain numbers, they are added as strings rather than integers, e.g. "2"+"2" returns "22".
Delimited by single or double quote marks; unlike in Unix shells, Perl, and Perl-influenced languages, single and double quote marks work the same. Both use the backslash (\) as an escape character. String interpolation became available in Python 3.6 as "formatted string literals".[99]
Triple-quoted (beginning and ending with three single or double quote marks), which may span multiple lines and function like here documents in shells, Perl, and Ruby.
Raw string varieties, denoted by prefixing the string literal with r. Escape sequences are not interpreted; hence raw strings are useful where literal backslashes are common, such as regular expressions and Windows-style paths. (Compare "@-quoting" in C#.)
Python has array index and array slicing expressions in lists, denoted as a[key], a[start:stop] or a[start:stop:step]. Indexes are zero-based, and negative indexes are relative to the end. Slices take elements from the start index up to, but not including, the stop index. The third slice parameter called step or stride, allows elements to be skipped and reversed. Slice indexes may be omitted—for example, a[:] returns a copy of the entire list. Each element of a slice is a shallow copy.
In Python, a distinction between expressions and statements is rigidly enforced, in contrast to languages such as Common Lisp, Scheme, or Ruby. This leads to duplicating some functionality. For example:
The eval() vs. exec() built-in functions (in Python 2, exec is a statement); the former is for expressions, the latter is for statements
Statements cannot be a part of an expression—so list and other comprehensions or lambda expressions, all being expressions, cannot contain statements. A particular case is that an assignment statement such as a=1 cannot form part of the conditional expression of a conditional statement. This has the advantage of avoiding a classic C error of mistaking an assignment operator = for an equality operator == in conditions: if(c=1){...} is syntactically valid (but probably unintended) C code, but ifc=1:... causes a syntax error in Python.
Methods
Methods on objects are functions attached to the object's class; the syntax instance.method(argument) is, for normal methods and functions, syntactic sugar for Class.method(instance,argument). Python methods have an explicit self parameter to access instance data, in contrast to the implicit self (or this) in some other object-oriented programming languages (e.g., C++, Java, Objective-C, Ruby).[100] Python also provides methods, often called dunder methods (due to their names beginning and ending with double-underscores), to allow user-defined classes to modify how they are handled by native operations including length, comparison, in arithmetic operations and type conversion.[101]
Typing
The standard type hierarchy in Python 3
Python uses duck typing and has typed objects but untyped variable names. Type constraints are not checked at compile time; rather, operations on an object may fail, signifying that it is not of a suitable type. Despite being dynamically typed, Python is strongly typed, forbidding operations that are not well-defined (for example, adding a number to a string) rather than silently attempting to make sense of them.
Python allows programmers to define their own types using classes, most often used for object-oriented programming. New instances of classes are constructed by calling the class (for example, SpamClass() or EggsClass()), and the classes are instances of the metaclasstype (itself an instance of itself), allowing metaprogramming and reflection.
Before version 3.0, Python had two kinds of classes (both using the same syntax): old-style and new-style,[102] current Python versions only support the semantics new style.
Python supports gradual typing.[103] Python's syntax allows specifying static types, but they are not checked in the default implementation, CPython. An experimental optional static type-checker, mypy, supports compile-time type checking.[104]
Python has the usual symbols for arithmetic operators (+, -, *, /), the floor division operator // and the modulo operation% (where the remainder can be negative, e.g. 4 % -3 == -2). It also has ** for exponentiation, e.g. 5**3 == 125 and 9**0.5 == 3.0, and a matrix‑multiplication operator @ .[108] These operators work like in traditional math; with the same precedence rules, the operators infix (+ and - can also be unary to represent positive and negative numbers respectively).
The division between integers produces floating-point results. The behavior of division has changed significantly over time:[109]
Current Python (i.e. since 3.0) changed / to always be floating-point division, e.g. 5/2==2.5.
The floor division // operator was introduced. So 7//3 == 2, -7//3 == -3, 7.5//3 == 2.0 and -7.5//3 == -3.0. Adding from__future__importdivision causes a module used in Python 2.7 to use Python 3.0 rules for division (see above).
In Python terms, / is true division (or simply division), and // is floor division./ before version 3.0 is classic division.[109]
Rounding towards negative infinity, though different from most languages, adds consistency. For instance, it means that the equation (a+b)//b==a//b+1 is always true. It also means that the equation b*(a//b)+a%b==a is valid for both positive and negative values of a. However, maintaining the validity of this equation means that while the result of a%b is, as expected, in the half-open interval [0, b), where b is a positive integer, it has to lie in the interval (b, 0] when b is negative.[110]
Python provides a round function for rounding a float to the nearest integer. For tie-breaking, Python 3 uses round to even: round(1.5) and round(2.5) both produce 2.[111] Versions before 3 used round-away-from-zero: round(0.5) is 1.0, round(-0.5) is −1.0.[112]
Python allows Boolean expressions with multiple equality relations in a manner that is consistent with general use in mathematics. For example, the expression a < b < c tests whether a is less than b and b is less than c.[113] C-derived languages interpret this expression differently: in C, the expression would first evaluate a < b, resulting in 0 or 1, and that result would then be compared with c.[114]
Due to Python's extensive mathematics library, and the third-party library NumPy that further extends the native capabilities, it is frequently used as a scientific scripting language to aid in problems such as numerical data processing and manipulation.[117][118]
Program to calculate the factorial of a positive integer:
n=int(input('Type a number, and its factorial will be printed: '))ifn<0:raiseValueError('You must enter a non-negative integer')factorial=1foriinrange(2,n+1):factorial*=iprint(factorial)
Some parts of the standard library are covered by specifications—for example, the Web Server Gateway Interface (WSGI) implementation wsgiref follows PEP 333[121]—but most are specified by their code, internal documentation, and test suites. However, because most of the standard library is cross-platform Python code, only a few modules need altering or rewriting for variant implementations.
As of 14 November 2022,[update] the Python Package Index (PyPI), the official repository for third-party Python software, contains over 415,000[122] packages with a wide range of functionality, including:
Most Python implementations (including CPython) include a read–eval–print loop (REPL), permitting them to function as a command line interpreter for which users enter statements sequentially and receive results immediately.
CPython is the reference implementation of Python. It is written in C, meeting the C89 standard (Python 3.11 uses C11[124]) with several select C99 features. CPython includes its own C extensions, but third-party extensions are not limited to older C versions—e.g. they can be implemented with C11 or C++.[125][126]) It compiles Python programs into an intermediate bytecode[127] which is then executed by its virtual machine.[128] CPython is distributed with a large standard library written in a mixture of C and native Python, and is available for many platforms, including Windows (starting with Python 3.9, the Python installer deliberately fails to install on Windows 7 and 8;[129][130]Windows XP was supported until Python 3.5) and most modern Unix-like systems, including macOS (and Apple M1 Macs, since Python 3.9.1, with experimental installer) and unofficial support for e.g. VMS.[131] Platform portability was one of its earliest priorities.[132] (During Python 1 and 2 development, even OS/2 and Solaris were supported,[133] but support has since been dropped for many platforms.)
Other implementations
PyPy is a fast, compliant interpreter of Python 2.7 and 3.8.[134][135] Its just-in-time compiler often brings a significant speed improvement over CPython but some libraries written in C cannot be used with it.[136]
Stackless Python is a significant fork of CPython that implements microthreads; it does not use the call stack in the same way, thus allowing massively concurrent programs. PyPy also has a stackless version.[137]
Pyston is a variant of the Python runtime that uses just-in-time compilation to speed up the execution of Python programs.[139]
Cinder is a performance-oriented fork of CPython 3.8 that contains a number of optimizations including bytecode inline caching, eager evaluation of coroutines, a method-at-a-time JIT, and an experimental bytecode compiler.[140]
Unsupported implementations
Other just-in-time Python compilers have been developed, but are now unsupported:
Google began a project named Unladen Swallow in 2009, with the aim of speeding up the Python interpreter fivefold by using the LLVM, and of improving its multithreading ability to scale to thousands of cores,[141] while ordinary implementations suffer from the global interpreter lock.
Psyco is a discontinued just-in-timespecializing compiler that integrates with CPython and transforms bytecode to machine code at runtime. The emitted code is specialized for certain data types and is faster than the standard Python code. Psyco does not support Python 2.7 or later.
PyS60 was a Python 2 interpreter for Series 60 mobile phones released by Nokia in 2005. It implemented many of the modules from the standard library and some additional modules for integrating with the Symbian operating system. The Nokia N900 also supports Python with GTK widget libraries, enabling programs to be written and run on the target device.[142]
Cross-compilers to other languages
There are several compilers/transpilers to high-level object languages, with either unrestricted Python, a restricted subset of Python, or a language similar to Python as the source language:
Codon compiles a subset of statically-typed Python[146] to machine code (via LLVM) and supports native multithreading.[147]
Cython compiles (a superset of) Python to C. The resulting code is also usable with Python via direct C-level API calls into the Python interpreter.
PyJL compiles/transpiles a subset of Python to "human-readable, maintainable, and high-performance Julia source code".[76] Despite claiming high performance, no tool can claim to do that for arbitrary Python code; i.e. it's known not possible to compile to a faster language or machine code. Unless semantics of Python are changed, but in many cases speedup is possible with few or no changes in the Python code. The faster Julia source code can then be used from Python, or compiled to machine code, and based that way.
IronPython allows running Python 2.7 programs (and an alpha, released in 2021, is also available for "Python 3.4, although features and behaviors from later versions may be included"[156]) on the .NET Common Language Runtime.[157]
Jython compiles Python 2.7 to Java bytecode, allowing the use of the Java libraries from a Python program.[158]
Pyrex (latest release in 2010) and Shed Skin (latest release in 2013) compile to C and C++ respectively.
Performance
Performance comparison of various Python implementations on a non-numerical (combinatorial) workload was presented at EuroSciPy '13.[159] Python's performance compared to other programming languages is also benchmarked by The Computer Language Benchmarks Game.[160]
Development
Python's development is conducted largely through the Python Enhancement Proposal (PEP) process, the primary mechanism for proposing major new features, collecting community input on issues, and documenting Python design decisions.[161] Python coding style is covered in PEP 8.[162] Outstanding PEPs are reviewed and commented on by the Python community and the steering council.[161]
Enhancement of the language corresponds with the development of the CPython reference implementation. The mailing list python-dev is the primary forum for the language's development. Specific issues were originally discussed in the Roundupbug tracker hosted at by the foundation.[163] In 2022, all issues and discussions were migrated to GitHub.[164] Development originally took place on a self-hosted source-code repository running Mercurial, until Python moved to GitHub in January 2017.[165]
CPython's public releases come in three types, distinguished by which part of the version number is incremented:
Backward-incompatible versions, where code is expected to break and needs to be manually ported. The first part of the version number is incremented. These releases happen infrequently—version 3.0 was released 8 years after 2.0. According to Guido van Rossum, a version 4.0 is very unlikely to ever happen.[166]
Major or "feature" releases are largely compatible with the previous version but introduce new features. The second part of the version number is incremented. Starting with Python 3.9, these releases are expected to happen annually.[167][168] Each major version is supported by bug fixes for several years after its release.[169]
Bugfix releases,[170] which introduce no new features, occur about every 3 months and are made when a sufficient number of bugs have been fixed upstream since the last release. Security vulnerabilities are also patched in these releases. The third and final part of the version number is incremented.[170]
Many alpha, beta, and release-candidates are also released as previews and for testing before final releases. Although there is a rough schedule for each release, they are often delayed if the code is not ready. Python's development team monitors the state of the code by running the large unit test suite during development.[171]
Python 3.12 removed wstr meaning Python extensions[172] need to be modified,[173] and 3.10 added pattern matching to the language.[174]
Python 3.12 dropped some outdated modules, and more will be dropped in the future, deprecated as of 3.13; already deprecated array 'u' format code will emit DeprecationWarning since 3.13 and will be removed in Python 3.16. The 'w' format code should be used instead. Part of ctypes is also deprecated and http.server.CGIHTTPRequestHandler will emit a DeprecationWarning, and will be removed in 3.15. Using that code already has a high potential for both security and functionality bugs. Parts of the typing module are deprecated, e.g. creating a typing.NamedTuple class using keyword arguments to denote the fields and such (and more) will be disallowed in Python 3.15.
API documentation generators
Tools that can generate documentation for Python API include pydoc (available as part of the standard library), Sphinx, Pdoc and its forks, Doxygen and Graphviz, among others.[175]
Naming
Python's name is derived from the British comedy group Monty Python, whom Python creator Guido van Rossum enjoyed while developing the language. Monty Python references appear frequently in Python code and culture;[176] for example, the metasyntactic variables often used in Python literature are spam and eggs instead of the traditional foo and bar.[176][177] The official Python documentation also contains various references to Monty Python routines.[178][179] Users of Python are sometimes referred to as "Pythonistas".[180]
The prefix Py- is used to show that something is related to Python. Examples of the use of this prefix in names of Python applications or libraries include Pygame, a binding of SDL to Python (commonly used to create games); PyQt and PyGTK, which bind Qt and GTK to Python respectively; and PyPy, a Python implementation originally written in Python.
Popularity
Since 2003, Python has consistently ranked in the top ten most popular programming languages in the TIOBE Programming Community Index where as of December 2022[update] it was the most popular language (ahead of C, C++, and Java).[39] It was selected Programming Language of the Year (for "the highest rise in ratings in a year") in 2007, 2010, 2018, and 2020 (the only language to have done so four times as of 2020[update][181]).
An empirical study found that scripting languages, such as Python, are more productive than conventional languages, such as C and Java, for programming problems involving string manipulation and search in a dictionary, and determined that memory consumption was often "better than Java and not much worse than C or C++".[182]
LibreOffice includes Python and intends to replace Java with Python. Its Python Scripting Provider is a core feature[215] since Version 4.0 from 7 February 2013.
Languages influenced by Python
Python's design and philosophy have influenced many other programming languages:
Boo uses indentation, a similar syntax, and a similar object model.[216]
Cobra uses indentation and a similar syntax, and its Acknowledgements document lists Python first among languages that influenced it.[217]
CoffeeScript, a programming language that cross-compiles to JavaScript, has Python-inspired syntax.
GDScript, a scripting language very similar to Python, built-in to the Godot game engine.[219]
Go is designed for the "speed of working in a dynamic language like Python"[220] and shares the same syntax for slicing arrays.
Groovy was motivated by the desire to bring the Python design philosophy to Java.[221]
Julia was designed to be "as usable for general programming as Python".[27]
Mojo is currently a non-strict[28][222] (aims to be a strict) superset of Python (e.g. still missing classes, and adding e.g. struct), and is up to 35,000x faster[223] for some code (mandelbrot, since it is embarrassingly parallel), where static typing helps (and MLIR it is implemented with), and, e.g., 4000 times faster for matrix multiplication.
Ruby's creator, Yukihiro Matsumoto, has said: "I wanted a scripting language that was more powerful than Perl, and more object-oriented than Python. That's why I decided to design my own language."[225]
Swift, a programming language developed by Apple, has some Python-inspired syntax.[226]
Python's development practices have also been emulated by other languages. For example, the practice of requiring a document describing the rationale for, and issues surrounding, a change to the language (in Python, a PEP) is also used in Tcl,[227]Erlang,[228] and Swift.[229]
^ ab"Why was Python created in the first place?". General Python FAQ. Python Software Foundation. Archived from the original on 24 October 2012. Retrieved 22 March 2007. I had extensive experience with implementing an interpreted language in the ABC group at CWI, and from working with this group I had learned a lot about language design. This is the origin of many Python features, including the use of indentation for statement grouping and the inclusion of very high-level data types (although the details are all different in Python).
^ abKuchling, Andrew M. (22 December 2006). "Interview with Guido van Rossum (July 1998)". amk.ca. Archived from the original on 1 May 2007. Retrieved 12 March 2012. I'd spent a summer at DEC's Systems Research Center, which introduced me to Modula-2+; the Modula-3 final report was being written there at about the same time. What I learned there later showed up in Python's exception handling, modules, and the fact that methods explicitly contain 'self' in their parameter list. String slicing came from Algol-68 and Icon.
^van Rossum, Guido (1993). "An Introduction to Python for UNIX/C Programmers". Proceedings of the NLUUG Najaarsconferentie (Dutch UNIX Users Group). CiteSeerX10.1.1.38.2023. even though the design of C is far from ideal, its influence on Python is considerable.
^ ab"Classes". The Python Tutorial. Python Software Foundation. Archived from the original on 23 October 2012. Retrieved 20 February 2012. It is a mixture of the class mechanisms found in C++ and Modula-3
^Lundh, Fredrik. "Call By Object". effbot.org. Archived from the original on 23 November 2019. Retrieved 21 November 2017. replace "CLU" with "Python", "record" with "instance", and "procedure" with "function or method", and you get a pretty accurate description of Python's object model.
^Simionato, Michele. "The Python 2.3 Method Resolution Order". Python Software Foundation. Archived from the original on 20 August 2020. Retrieved 29 July 2014. The C3 method itself has nothing to do with Python, since it was invented by people working on Dylan and it is described in a paper intended for lispers
^Kuchling, A. M. "Functional Programming HOWTO". Python v2.7.2 documentation. Python Software Foundation. Archived from the original on 24 October 2012. Retrieved 9 February 2012. List comprehensions and generator expressions [...] are a concise notation for such operations, borrowed from the functional programming language Haskell.
^Schemenauer, Neil; Peters, Tim; Hetland, Magnus Lie (18 May 2001). "PEP 255 – Simple Generators". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 5 June 2020. Retrieved 9 February 2012.
^"More Control Flow Tools". Python 3 documentation. Python Software Foundation. Archived from the original on 4 June 2016. Retrieved 24 July 2015. By popular demand, a few features commonly found in functional programming languages like Lisp have been added to Python. With the lambda keyword, small anonymous functions can be created.
^ ab"Why We Created Julia". Julia website. February 2012. Archived from the original on 2 May 2020. Retrieved 5 June 2014. We want something as usable for general programming as Python [...]
^Ring Team (4 December 2017). "Ring and other languages". ring-lang.net. ring-lang. Archived from the original on 25 December 2018. Retrieved 4 December 2017.
^Lattner, Chris (3 June 2014). "Chris Lattner's Homepage". Chris Lattner. Archived from the original on 25 December 2018. Retrieved 3 June 2014. The Swift language is the product of tireless effort from a team of language experts, documentation gurus, compiler optimization ninjas, and an incredibly important internal dogfooding group who provided feedback to help refine and battle-test ideas. Of course, it also greatly benefited from the experiences hard-won by many other languages in the field, drawing ideas from Objective-C, Rust, Haskell, Ruby, Python, C#, CLU, and far too many others to list.
^"About Python". Python Software Foundation. Archived from the original on 20 April 2012. Retrieved 24 April 2012., second section "Fans of Python use the phrase "batteries included" to describe the standard library, which covers everything from asynchronous processing to zip files."
^ ab"TIOBE Index". TIOBE. Archived from the original on 25 February 2018. Retrieved 3 January 2023. The TIOBE Programming Community index is an indicator of the popularity of programming languages Updated as required.
^ abVenners, Bill (13 January 2003). "The Making of Python". Artima Developer. Artima. Archived from the original on 1 September 2016. Retrieved 22 March 2007.
^van Rossum, Guido (20 January 2009). "A Brief Timeline of Python". The History of Python. Archived from the original on 5 June 2020. Retrieved 20 January 2009.
^Kuchling, A. M.; Zadka, Moshe (16 October 2000). "What's New in Python 2.0". Python Software Foundation. Archived from the original on 23 October 2012. Retrieved 11 February 2012.
^van Rossum, Guido (5 April 2006). "PEP 3000 – Python 3000". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 3 March 2016. Retrieved 27 June 2009.
^"3.3. Special method names". The Python Language Reference. Python Software Foundation. Archived from the original on 15 December 2018. Retrieved 27 June 2009.
^"PyDatalog". Archived from the original on 13 June 2020. Retrieved 22 July 2012.
^"Extending and Embedding the Python Interpreter: Reference Counts". Docs.python.org. Archived from the original on 18 October 2012. Retrieved 5 June 2020. Since Python makes heavy use of malloc() and free(), it needs a strategy to avoid memory leaks as well as the use of freed memory. The chosen method is called reference counting.
^ abHettinger, Raymond (30 January 2002). "PEP 289 – Generator Expressions". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 14 June 2020. Retrieved 19 February 2012.
^ abPeters, Tim (19 August 2004). "PEP 20 – The Zen of Python". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 26 December 2018. Retrieved 24 November 2008.
^ ab"Transpiling Python to Julia using PyJL"(PDF). After manually modifying one line of code by specifying the necessary type information, we obtained a speedup of 52.6×, making the translated Julia code 19.5× faster than the original Python code.
^Guttag, John V. (12 August 2016). Introduction to Computation and Programming Using Python: With Application to Understanding Data. MIT Press. ISBN978-0-262-52962-4.
^van Rossum, Guido (22 April 2009). "Tail Recursion Elimination". Neopythonic.blogspot.be. Archived from the original on 19 May 2018. Retrieved 3 December 2012.
^van Rossum, Guido; Eby, Phillip J. (10 May 2005). "PEP 342 – Coroutines via Enhanced Generators". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 29 May 2020. Retrieved 19 February 2012.
^"PEP 380". Python.org. Archived from the original on 4 June 2020. Retrieved 3 December 2012.
^"division". python.org. Archived from the original on 20 July 2006. Retrieved 30 July 2014.
^van Rossum, Guido; Hettinger, Raymond (7 February 2003). "PEP 308 – Conditional Expressions". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 13 March 2016. Retrieved 13 July 2011.
^Zadka, Moshe; van Rossum, Guido (11 March 2001). "PEP 237 – Unifying Long Integers and Integers". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 28 May 2020. Retrieved 24 September 2011.
^ abZadka, Moshe; van Rossum, Guido (11 March 2001). "PEP 238 – Changing the Division Operator". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 28 May 2020. Retrieved 23 October 2013.
^Batista, Facundo (17 October 2003). "PEP 327 – Decimal Data Type". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 4 June 2020. Retrieved 24 November 2008.
^van Rossum, Guido (5 June 2001). "PEP 7 – Style Guide for C Code". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 1 June 2020. Retrieved 24 November 2008.
^"Jython FAQ". www.jython.org. Archived from the original on 22 April 2021. Retrieved 22 April 2021.
^Murri, Riccardo (2013). Performance of Python runtimes on a non-numeric scientific code. European Conference on Python in Science (EuroSciPy). arXiv:1404.6388. Bibcode:2014arXiv1404.6388M.
^ abWarsaw, Barry; Hylton, Jeremy; Goodger, David (13 June 2000). "PEP 1 – PEP Purpose and Guidelines". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 6 June 2020. Retrieved 19 April 2011.
^ abAahz; Baxter, Anthony (15 March 2001). "PEP 6 – Bug Fix Releases". Python Enhancement Proposals. Python Software Foundation. Archived from the original on 5 June 2020. Retrieved 27 June 2009.
^"Python Buildbot". Python Developer's Guide. Python Software Foundation. Archived from the original on 5 June 2020. Retrieved 24 September 2011.
^ ab"Whetting Your Appetite". The Python Tutorial. Python Software Foundation. Archived from the original on 26 October 2012. Retrieved 20 February 2012.
^Blake, Troy (18 January 2021). "TIOBE Index for January 2021". Technology News and Information by SeniorDBA. Archived from the original on 21 March 2021. Retrieved 26 February 2021.
^Taft, Darryl K. (5 March 2007). "Python Slithers into Systems". eWeek.com. Ziff Davis Holdings. Archived from the original on 13 August 2021. Retrieved 24 September 2011.
^CCP porkbelly (24 August 2010). "Stackless Python 2.7". EVE Community Dev Blogs. CCP Games. Archived from the original on 11 January 2014. Retrieved 11 January 2014. As you may know, EVE has at its core the programming language known as Stackless Python.
^Caudill, Barry (20 September 2005). "Modding Sid Meier's Civilization IV". Sid Meier's Civilization IV Developer Blog. Firaxis Games. Archived from the original on 2 December 2010. we created three levels of tools ... The next level offers Python and XML support, letting modders with more experience manipulate the game world and everything in it.
^"Modular Docs - Why Mojo🔥". docs.modular.com. Archived from the original on 5 May 2023. Retrieved 5 May 2023. Mojo as a member of the Python family [..] Embracing Python massively simplifies our design efforts, because most of the syntax is already specified. [..] we decided that the right long-term goal for Mojo is to provide a superset of Python (i.e. be compatible with existing programs) and to embrace the CPython immediately for long-tail ecosystem enablement. To a Python programmer, we expect and hope that Mojo will be immediately familiar, while also providing new tools for developing systems-level code that enable you to do things that Python falls back to C and C++ for.
^Yegulalp, Serdar (16 January 2017). "Nim language draws from best of Python, Rust, Go, and Lisp". InfoWorld. Archived from the original on 13 October 2018. Retrieved 7 June 2020. Nim's syntax is strongly reminiscent of Python's, as it uses indented code blocks and some of the same syntax (such as the way if/elif/then/else blocks are constructed).
^Lattner, Chris (3 June 2014). "Chris Lattner's Homepage". Chris Lattner. Archived from the original on 22 December 2015. Retrieved 3 June 2014. I started work on the Swift Programming Language in July of 2010. I implemented much of the basic language structure, with only a few people knowing of its existence. A few other (amazing) people started contributing in earnest late in 2011, and it became a major focus for the Apple Developer Tools group in July 2013 [...] drawing ideas from Objective-C, Rust, Haskell, Ruby, Python, C#, CLU, and far too many others to list.
^Kupries, Andreas; Fellows, Donal K. (14 September 2000). "TIP #3: TIP Format". tcl.tk. Tcl Developer Xchange. Archived from the original on 13 July 2017. Retrieved 24 November 2008.
^"Swift Evolution Process". Swift Programming Language Evolution repository on GitHub. 18 February 2020. Archived from the original on 27 April 2020. Retrieved 27 April 2020.
Paine, Jocelyn, ed. (August 2005). "AI in Python". AI Expert Newsletter. Amzi!. Archived from the original on 26 March 2012. Retrieved 11 February 2012.
Downey, Allen B. (May 2012). Think Python: How to Think Like a Computer Scientist (version 1.6.6 ed.). Cambridge University Press. ISBN978-0-521-72596-5.