This article needs additional citations for verification. Please help improve this article by adding citations to reliable sources. Unsourced material may be challenged and removed.Find sources: "Single-board computer" – news · newspapers · books · scholar · JSTOR (November 2013) (Learn how and when to remove this template message)
This article needs to be updated. Please help update this article to reflect recent events or newly available information. (June 2022)
The Raspberry Pi is a low-cost single-board computer used to teach computer science.[1]
The Raspberry Pi is a low-cost single-board computer used to teach computer science.[1]

A single-board computer (SBC) is a complete computer built on a single circuit board, with microprocessor(s), memory, input/output (I/O) and other features required of a functional computer. Single-board computers are commonly made as demonstration or development systems, for educational systems, or for use as embedded computer controllers. Many types of home computers or portable computers integrate all their functions onto a single printed circuit board.

Unlike a desktop personal computer, single board computers often do not rely on expansion slots for peripheral functions or expansion. Single board computers have been built using a wide range of microprocessors. Simple designs, such as those built by computer hobbyists, often use static RAM and low-cost 32- or 64-bit processors like ARM. Other types, such as blade servers, would perform similar to a server computer, only in a more compact format.

A computer-on-module is a type of single-board computer made to plug into a carrier board, baseboard, or backplane for system expansion.[2][3]


An early MMD-1, the world's first true single board computer
An early MMD-1, the world's first true single board computer

The first true single-board computer (see the May 1976 issue of Radio-Electronics) called the "dyna-micro" was based on the Intel C8080A, and also used Intel's first EPROM, the C1702A. The dyna-micro was re-branded by E&L Instruments of Derby, Connecticut, in 1976 as the "MMD-1" (Mini-Micro Designer 1) and was made famous as the example microcomputer in the very popular 8080 "BugBook" series of the time. SBCs also figured heavily in the early history of home computers, for example in the Acorn Electron and the BBC Micro. Other typical early single board computers like the KIM-1 were often shipped without enclosure, which had to be added by the owner. Other early examples are the Ferguson Big Board, the Ampro Little Board,[4] and the Nascom.

As the PC market became more prevalent, fewer SBCs were being used in computers. The main components were assembled on a motherboard, and peripheral components such as hard disk drive controllers and graphics processors were located on daughterboards. The recent availability of advanced chipsets providing most of the I/O features as embedded components allows motherboard manufacturers to offer motherboards with I/O traditionally provided by daughterboards. Most PC motherboards now offer on-board support for disk drives including IDE, SATA, NVMe, RAID, integrated GPU, Ethernet, and traditional I/O such as serial port and parallel port, USB, and keyboard/mouse support. Plug-in cards are now more commonly high performance graphics cards (really graphics co-processors), high-end RAID controllers, and specialized I/O cards such as data acquisition and DSP (Digital Signal Processor) boards.


A socket 3 based 486 SBC with power supply and flatscreen
A socket 3 based 486 SBC with power supply and flatscreen

Single board computers were made possible by increasing the density of integrated circuits. A single-board configuration reduces a system's overall cost, by reducing the number of circuit boards required, and by eliminating connectors and bus driver circuits that would otherwise be used. By putting all the functions on one board, a smaller overall system can be obtained, for example, as in notebook computers. Connectors are a frequent source of reliability problems, so a single-board system eliminates these problems.[5]

Single board computers are now commonly defined across two distinct architectures: no slots and slot support.

Embedded SBCs are units providing all the required I/O with no provision for plug-in cards. Applications are typically gaming (slot machines, video poker), kiosk, and machine control automation. Embedded SBCs are much smaller than the ATX-type motherboard found in PCs, and provide an I/O mix more targeted to an industrial application, such as on-board digital and analog I/O, on-board bootable flash memory (eliminating the need for a disk drive), no video, etc.

The term "Single Board Computer" now generally applies to an architecture where the single board computer is plugged into a backplane to provide for I/O cards. In the case of PC104, the bus is not a backplane in the traditional sense but is a series of pin connectors allowing I/O boards to be stacked.

Single board computers are most commonly used in industrial situations where they are used in rackmount format for process control or embedded within other devices to provide control and interfacing. They are used in deep-sea exploration on the ALICE deep sea probes and in outer space, on the Ariane and Pegasus rockets and Space Shuttle.[6] Because of the very high levels of integration, reduced component counts and reduced connector counts, SBCs are often smaller, lighter, more power efficient and more reliable than comparable multi-board computers.[7]

The primary advantage of an ATX motherboard as compared to an SBC is cost. Motherboards are manufactured by the millions for the consumer and office markets allowing tremendous economies of scale. Single-board computers are a market niche and are manufactured less often and at a higher cost. Motherboards and SBCs now offer similar levels of feature integration meaning that a motherboard failure in either standard will require equivalent replacement.

Types, standards

One common variety of single board computer uses standardized computer form factors intended for use in a backplane enclosure. Some of these types are CompactPCI, PXI, VMEbus, VXI, and PICMG. SBCs have been built around various internal processing structures including the Intel architecture, multiprocessing architectures, and lower power processing systems like RISC and SPARC. In the Intel PC world, the intelligence and interface/control circuitry is placed on a plug-in board that is then inserted into a passive (or active) backplane. The end result is similar to having a system built with a motherboard, except that the backplane determines the slot configuration. Backplanes are available with a mix of slots (ISA, PCI, PCI-X, PCI-Express, etc.), usually totaling 20 or fewer, meaning it will fit in a 19" rackmount enclosure (17" wide chassis).

Some single-board computers have connectors that allow a stack of circuit boards, each containing expansion hardware, to be assembled without a traditional backplane. Examples of stacking SBC form factors include PC/104, PC/104-Plus, PCI-104, EPIC, and EBX; these systems are commonly available for use in embedded control systems.

Stack-type SBCs often have memory provided on plug-cards such as SIMMs and DIMMs. Hard drive circuit boards are also not counted for determining if a computer is an SBC or not for two reasons, firstly because the HDD is regarded as a single block storage unit, and secondly because the SBC may not require a hard drive at all as most can be booted from their network connections.

Form factors

See also


  1. ^ "Foundation Strategy 2016–2018" (PDF). Raspberry Pi. Raspberry Pi Foundation. pp. 3–5. Archived (PDF) from the original on 9 June 2016. Retrieved 26 November 2016.
  2. ^ "COM – Based SBCs: The Superior Architecture for Small Form Factor Embedded Systems" (PDF). Diamond Systems Corp. Archived (PDF) from the original on 29 December 2016. Retrieved 27 December 2016.
  3. ^ "Implementing High Performance Embedded Computing Hardware" (PDF). Trenton Systems, Inc. September 1, 2016. pp. 13–15. Archived (PDF) from the original on 26 November 2016. Retrieved 26 November 2016.
  4. ^ "Ampro Little Board". Archived from the original on 2020-02-07. Retrieved 2020-09-05.
  5. ^ Winn Rosch, Hardware Bible Fifth Edition, Que, 1999 ISBN 0-7897-1743-3 pp. 50-51
  6. ^ "Single Board Computer Peripherals". Newmicros. Archived from the original on June 28, 2017. Retrieved July 7, 2017.
  7. ^ "A UHF RFID Printed Circuit Board Solution". Magicstrap. January 2012. p. 4. Archived from the original on 26 November 2016. Retrieved 26 November 2016.