SmartPLS
SmartPLS Logo.png
Original author(s)Christian M. Ringle, Sven Wende, Jan-Michael Becker
Developer(s)SmartPLS GmbH
Initial release2005 (2005)
Stable release
Smart PLS 3.3.5 / December 20, 2021; 9 months ago (2021-12-20)
Operating systemWindows and Mac
PlatformJava
Available inEnglish (default language), Arabic, Chinese, French, German, Indonesian, Italian, Japanese, Korean, Malay, Persian, Polish, Portuguese, Romanian, Spanish, Urdu
TypeStatistical analysis, multivariate analysis, structural equation modeling, partial least squares path modeling
LicenseSmartPLS 3: Proprietary software
Websitewww.smartpls.com

SmartPLS is a software with graphical user interface for variance-based structural equation modeling (SEM) using the partial least squares (PLS) path modeling method.[1][2][3][4][5] Users can estimate models with their data by using basic PLS-SEM, weighted PLS-SEM (WPLS), consistent PLS-SEM (PLSc-SEM), and sumscores regression algorithms.[6][7] The software computes standard results assessment criteria (e.g., for the reflective and formative measurement models and the structural model, including the HTMT criterion, bootstrap based significance testing, PLSpredict, and goodness of fit)[8] and it supports additional statistical analyses (e.g., confirmatory tetrad analysis, higher-order models, importance-performance map analysis, latent class segmentation, mediation, moderation, measurement invariance assessment, multigroup analysis).[9][10][11] Since SmartPLS is programmed in Java, it can be executed and run on different computer operating systems such as Windows and Mac.[12]

See also

References

  1. ^ Wong, K. K. K. (2013). Partial least squares structural equation modeling (PLS-SEM) techniques using SmartPLS. Marketing Bulletin, 24(1), pp. 1-32, p. 1, p. 15, and p. 30.
  2. ^ Hair, J. F., Hult, G. T. M., Ringle, C., & Sarstedt, M. (2022). A primer on partial least squares structural equation modeling (PLS-SEM) (3rd ed.), Thousand Oaks, CA: Sage Publications.
  3. ^ Hair Jr, J. F., Sarstedt, M., Ringle, C. M., & Gudergan, S. P. (2018). Advanced issues in partial least squares structural equation modeling (PLS-SEM), Thousand Oaks, CA: Sage Publications.
  4. ^ Wong, Ken Kwong-Kay (2019-02-22). Mastering Partial Least Squares Structural Equation Modeling (Pls-Sem) with Smartpls in 38 Hours. iUniverse. ISBN 9781532066481.
  5. ^ Mumtaz Ali Memona, T. Ramayah, Jun-Hwa Cheah, Hiram Ting, Francis Chuah and Tat Huei Cham (2021). "PLS-SEM STATISTICAL PROGRAMS: A REVIEW" (PDF). Journal of Applied Structural Equation Modeling. 5(i): i–xiv.((cite journal)): CS1 maint: multiple names: authors list (link)
  6. ^ Lohmöller, J.-B. (1989). Latent variable path modeling with partial least squares. Physica: Heidelberg, p. 29.
  7. ^ Wold, H. (1982). Soft modeling: The basic design and some extensions, in: K. G. Jöreskog and H. Wold (eds.), Systems under indirect observations: Part II, North-Holland: Amsterdam, pp. 1-54, pp. 2-3.
  8. ^ Ramayah, T., Cheah, J., Chuah, F., Ting, H., and Memon, M. A. (2018). Partial least squares structural equation modeling (PLS-SEM) using SmartPLS 3.0: An updated and practical guide to statistical analysis (2nd ed.), Singapore et al.: Pearson.
  9. ^ Garson, G. D. (2016). Partial least squares regression and structural equation models, Statistical Associates: Asheboro, pp. 122-188.
  10. ^ Sarstedt, Marko; Cheah, Jun-Hwa (2019-06-27). "Partial least squares structural equation modeling using SmartPLS: A software review" (PDF). Journal of Marketing Analytics. 7 (3): 196–202. doi:10.1057/s41270-019-00058-3. ISSN 2050-3318. S2CID 198334897.
  11. ^ Hair, Joseph F.; Risher, Jeffrey J.; Sarstedt, Marko; Ringle, Christian M. (2019). "When to use and how to report the results of PLS-SEM". European Business Review. 31 (1): 2–24. doi:10.1108/EBR-11-2018-0203. ISSN 0955-534X. S2CID 158782424.
  12. ^ Temme, D., Kreis, H., and Hildebrandt, L. (2010). A comparison of current PLS path modeling software: Features, ease-of-use, and performance, in: V. Esposito Vinzi, W. W. Chin, J. Henseler, and H. Wang (eds.), Handbook of partial least squares: Concepts, methods and applications, Springer: Berlin-Heidelberg, pp. 737-756, p.745.