In functional analysis, an area of mathematics, the projective tensor product of two locally convex topological vector spaces is a natural topological vector space structure on their tensor product. Namely, given locally convex topological vector spaces and , the projective topology, or π-topology, on is the strongest topology which makes a locally convex topological vector space such that the canonical map (from to ) is continuous. When equipped with this topology, is denoted and called the projective tensor product of and .

Definitions

Let and be locally convex topological vector spaces. Their projective tensor product is the unique locally convex topological vector space with underlying vector space having the following universal property:[1]

For any locally convex topological vector space , if is the canonical map from the vector space of bilinear maps to the vector space of linear maps ; then the image of the restriction of to the continuous bilinear maps is the space of continuous linear maps .

When the topologies of and are induced by seminorms, the topology of is induced by seminorms constructed from those on and as follows. If is a seminorm on , and is a seminorm on , define their tensor product to be the seminorm on given by

for all in , where is the balanced convex hull of the set . The projective topology on is generated by the collection of such tensor products of the seminorms on and .[2][1] When and are normed spaces, this definition applied to the norms on and gives a norm, called the projective norm, on which generates the projective topology.[3]

Properties

Throughout, all spaces are assumed to be locally convex. The symbol denotes the completion of the projective tensor product of and .

Completion

This section contains close paraphrasing of non-free copyrighted sources. Relevant discussion may be found on the talk page. Please help rewriting it with your own words. (August 2023) (Learn how and when to remove this template message)

In general, the space is not complete, even if both and are complete (in fact, if and are both infinite-dimensional Banach spaces then is necessarily not complete[8]). However, can always be linearly embedded as a dense vector subspace of some complete locally convex TVS, which is generally denoted by .

The continuous dual space of is the same as that of , namely, the space of continuous bilinear forms .[9]

Grothendieck's representation of elements in the completion

In a Hausdorff locally convex space a sequence in is absolutely convergent if for every continuous seminorm on [10] We write if the sequence of partial sums converges to in [10]

The following fundamental result in the theory of topological tensor products is due to Alexander Grothendieck.[11]

Theorem — Let and be metrizable locally convex TVSs and let Then is the sum of an absolutely convergent series

where and and are null sequences in and respectively.

The next theorem shows that it is possible to make the representation of independent of the sequences and

Theorem[12] — Let and be Fréchet spaces and let (resp. ) be a balanced open neighborhood of the origin in (resp. in ). Let be a compact subset of the convex balanced hull of There exists a compact subset of the unit ball in and sequences and contained in and respectively, converging to the origin such that for every there exists some such that

Topology of bi-bounded convergence

Let and denote the families of all bounded subsets of and respectively. Since the continuous dual space of is the space of continuous bilinear forms we can place on the topology of uniform convergence on sets in which is also called the topology of bi-bounded convergence. This topology is coarser than the strong topology on , and in (Grothendieck 1955), Alexander Grothendieck was interested in when these two topologies were identical. This is equivalent to the problem: Given a bounded subset do there exist bounded subsets and such that is a subset of the closed convex hull of ?

Grothendieck proved that these topologies are equal when and are both Banach spaces or both are DF-spaces (a class of spaces introduced by Grothendieck[13]). They are also equal when both spaces are Fréchet with one of them being nuclear.[9]

Strong dual and bidual

Let be a locally convex topological vector space and let be its continuous dual space. Alexander Grothendieck characterized the strong dual and bidual for certain situations:

Theorem[14] (Grothendieck) — Let and be locally convex topological vector spaces with nuclear. Assume that both and are Fréchet spaces, or else that they are both DF-spaces. Then, denoting strong dual spaces with a subscripted :

  1. The strong dual of can be identified with ;
  2. The bidual of can be identified with ;
  3. If is reflexive then (and hence ) is a reflexive space;
  4. Every separately continuous bilinear form on is continuous;
  5. Let be the space of bounded linear maps from to . Then, its strong dual can be identified with so in particular if is reflexive then so is

Examples

See also

Citations

  1. ^ a b Trèves 2006, p. 438.
  2. ^ Trèves 2006, p. 435.
  3. ^ a b Trèves 2006, p. 437.
  4. ^ Trèves 2006, p. 445.
  5. ^ Trèves 2006, p. 439.
  6. ^ a b Ryan 2002, p. 18.
  7. ^ Ryan 2002, p. 24.
  8. ^ Ryan 2002, p. 43.
  9. ^ a b Schaefer & Wolff 1999, p. 173.
  10. ^ a b Schaefer & Wolff 1999, p. 120.
  11. ^ Schaefer & Wolff 1999, p. 94.
  12. ^ Trèves 2006, pp. 459–460.
  13. ^ Schaefer & Wolff 1999, p. 154.
  14. ^ Schaefer & Wolff 1999, pp. 175–176.
  15. ^ Schaefer & Wolff 1999, p. 95.

References

Further reading