Distributions, also known as Schwartz distributions or generalized functions, are objects that generalize the classical notion of functions in mathematical analysis. Distributions make it possible to differentiate functions whose derivatives do not exist in the classical sense. In particular, any locally integrable function has a distributional derivative.

Distributions are widely used in the theory of partial differential equations, where it may be easier to establish the existence of distributional solutions than classical solutions, or where appropriate classical solutions may not exist. Distributions are also important in physics and engineering where many problems naturally lead to differential equations whose solutions or initial conditions are singular, such as the Dirac delta function.

A function ${\displaystyle f}$ is normally thought of as acting on the points in its domain by sending a point x in its domain to the point ${\displaystyle f(x).}$ Instead, distribution theory reinterprets functions as being equivalent to their dual linear functionals: if every nicely behaved test function integrated with a function gives out the same result, this defines a linear functional equivalent to every conventional function.

However, this kind of definition is much laxer, and admits mathematical objects beyond functions. In particular, these kinds of generalised functions can be used to represent singular measures, such as the delta function, and all of its derivatives. Since the distributional framework is localised, linear, and shift-invariant, it can represent almost all of the compositions of the basis waveforms as well. It also admits a full Fourier theory, and since the theory is fully localised, there is no need to have functions fall off in time or shift.

In applications to physics and engineering, test functions are usually infinitely differentiable complex-valued (or real-valued) functions with compact support that are defined on some given non-empty open subset ${\displaystyle U\subseteq \mathbb {R} ^{n))$ (bump functions are examples of test functions). The set of all such test functions forms a vector space that is denoted by ${\displaystyle C_{c}^{\infty }(U)}$ or ${\displaystyle {\mathcal {D))(U).}$

Most commonly encountered functions, including all continuous maps ${\displaystyle f:\mathbb {R} \to \mathbb {R} }$ if using ${\displaystyle U:=\mathbb {R} ,}$ can be canonically reinterpreted as acting via "integration against a test function." Explicitly, this means that ${\displaystyle f}$ "acts on" a test function ${\displaystyle \psi \in {\mathcal {D))(\mathbb {R} )}$ by "sending" it to the number ${\textstyle \int _{\mathbb {R} }f\,\psi \,dx,}$ which is often denoted by ${\displaystyle D_{f}(\psi ).}$ This new action ${\textstyle \psi \mapsto D_{f}(\psi )}$ of ${\displaystyle f}$ is a scalar-valued map, denoted by ${\displaystyle D_{f},}$ whose domain is the space of test functions ${\displaystyle {\mathcal {D))(\mathbb {R} ).}$ This functional ${\displaystyle D_{f))$ turns out to have the two defining properties of what is known as a distribution on ${\displaystyle \mathbb {R} :}$ it is linear and also continuous when ${\displaystyle {\mathcal {D))(\mathbb {R} )}$ is given a certain topology called the canonical LF topology. Distributions like ${\displaystyle D_{f))$ that arise from functions in this way are prototypical examples of distributions, but there are many which cannot be defined by integration against any function. Examples of the latter include the Dirac delta function and distributions defined to act by integration of test functions against certain measures. It is nonetheless still possible to reduce any arbitrary distribution down to a simpler family of related distributions that do arise via such actions of integration.

More generally, a distribution on ${\displaystyle U}$ is by definition a linear functional on ${\displaystyle C_{c}^{\infty }(U)}$ that is continuous when ${\displaystyle C_{c}^{\infty }(U)}$ is given a topology called the canonical LF topology. This leads to the space of (all) distributions on ${\displaystyle U}$, usually denoted by ${\displaystyle {\mathcal {D))'(U)}$ (note the prime), which by definition is the space of all distributions on ${\displaystyle U}$ (that is, it is the continuous dual space of ${\displaystyle C_{c}^{\infty }(U)}$); it is these distributions that are the main focus of this article.

Definitions of the appropriate topologies on spaces of test functions and distributions are given in the article on spaces of test functions and distributions. This article is primarily concerned with the definition of distributions, together with their properties and some important examples.

## History

The practical use of distributions can be traced back to the use of Green functions in the 1830s to solve ordinary differential equations, but was not formalized until much later. According to Kolmogorov & Fomin (1957), generalized functions originated in the work of Sergei Sobolev (1936) on second-order hyperbolic partial differential equations, and the ideas were developed in somewhat extended form by Laurent Schwartz in the late 1940s. According to his autobiography, Schwartz introduced the term "distribution" by analogy with a distribution of electrical charge, possibly including not only point charges but also dipoles and so on. Gårding (1997) comments that although the ideas in the transformative book by Schwartz (1951) were not entirely new, it was Schwartz's broad attack and conviction that distributions would be useful almost everywhere in analysis that made the difference.

## Notation

• ${\displaystyle n}$ is a fixed positive integer and ${\displaystyle U}$ is a fixed non-empty open subset of Euclidean space ${\displaystyle \mathbb {R} ^{n}.}$
• ${\displaystyle \mathbb {N} =\{0,1,2,\ldots \))$ denotes the natural numbers.
• ${\displaystyle k}$ will denote a non-negative integer or ${\displaystyle \infty .}$
• If ${\displaystyle f}$ is a function then ${\displaystyle \operatorname {Dom} (f)}$ will denote its domain and the support of ${\displaystyle f,}$ denoted by ${\displaystyle \operatorname {supp} (f),}$ is defined to be the closure of the set ${\displaystyle \{x\in \operatorname {Dom} (f):f(x)\neq 0\))$ in ${\displaystyle \operatorname {Dom} (f).}$
• For two functions ${\displaystyle f,g:U\to \mathbb {C} ,}$ the following notation defines a canonical pairing:
${\displaystyle \langle f,g\rangle :=\int _{U}f(x)g(x)\,dx.}$
• A multi-index of size ${\displaystyle n}$ is an element in ${\displaystyle \mathbb {N} ^{n))$ (given that ${\displaystyle n}$ is fixed, if the size of multi-indices is omitted then the size should be assumed to be ${\displaystyle n}$). The length of a multi-index ${\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n))$ is defined as ${\displaystyle \alpha _{1}+\cdots +\alpha _{n))$ and denoted by ${\displaystyle |\alpha |.}$ Multi-indices are particularly useful when dealing with functions of several variables, in particular we introduce the following notations for a given multi-index ${\displaystyle \alpha =(\alpha _{1},\ldots ,\alpha _{n})\in \mathbb {N} ^{n))$:
{\displaystyle {\begin{aligned}x^{\alpha }&=x_{1}^{\alpha _{1))\cdots x_{n}^{\alpha _{n))\\\partial ^{\alpha }&={\frac {\partial ^{|\alpha |)){\partial x_{1}^{\alpha _{1))\cdots \partial x_{n}^{\alpha _{n))))\end{aligned))}
We also introduce a partial order of all multi-indices by ${\displaystyle \beta \geq \alpha }$ if and only if ${\displaystyle \beta _{i}\geq \alpha _{i))$ for all ${\displaystyle 1\leq i\leq n.}$ When ${\displaystyle \beta \geq \alpha }$ we define their multi-index binomial coefficient as:
${\displaystyle {\binom {\beta }{\alpha )):={\binom {\beta _{1)){\alpha _{1))}\cdots {\binom {\beta _{n)){\alpha _{n))}.}$

## Definitions of test functions and distributions

In this section, some basic notions and definitions needed to define real-valued distributions on U are introduced. Further discussion of the topologies on the spaces of test functions and distributions are given in the article on spaces of test functions and distributions.

Notation:
1. Let ${\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}$
2. Let ${\displaystyle C^{k}(U)}$ denote the vector space of all k-times continuously differentiable real or complex-valued functions on U.
3. For any compact subset ${\displaystyle K\subseteq U,}$ let ${\displaystyle C^{k}(K)}$ and ${\displaystyle C^{k}(K;U)}$ both denote the vector space of all those functions ${\displaystyle f\in C^{k}(U)}$ such that ${\displaystyle \operatorname {supp} (f)\subseteq K.}$
• Note that ${\displaystyle C^{k}(K)}$ depends on both K and U but we will only indicate K, where in particular, if ${\displaystyle f\in C^{k}(K)}$ then the domain of ${\displaystyle f}$ is U rather than K. We will use the notation ${\displaystyle C^{k}(K;U)}$ only when the notation ${\displaystyle C^{k}(K)}$ risks being ambiguous.
• Every ${\displaystyle C^{k}(K)}$ contains the constant 0 map, even if ${\displaystyle K=\varnothing .}$
4. Let ${\displaystyle C_{c}^{k}(U)}$ denote the set of all ${\displaystyle f\in C^{k}(U)}$ such that ${\displaystyle f\in C^{k}(K)}$ for some compact subset K of U.
• Equivalently, ${\displaystyle C_{c}^{k}(U)}$ is the set of all ${\displaystyle f\in C^{k}(U)}$ such that ${\displaystyle f}$ has compact support.
• ${\displaystyle C_{c}^{k}(U)}$ is equal to the union of all ${\displaystyle C^{k}(K)}$ as ${\displaystyle K\subseteq U}$ ranges over all compact subsets of ${\displaystyle U.}$
• If ${\displaystyle f}$ is a real-valued function on U, then ${\displaystyle f}$ is an element of ${\displaystyle C_{c}^{k}(U)}$ if and only if ${\displaystyle f}$ is a ${\displaystyle C^{k))$ bump function. Every real-valued test function on ${\displaystyle U}$ is always also a complex-valued test function on ${\displaystyle U.}$
The graph of the bump function ${\displaystyle (x,y)\in \mathbb {R} ^{2}\mapsto \Psi (r),}$ where ${\displaystyle r=\left(x^{2}+y^{2}\right)^{\frac {1}{2))}$ and ${\displaystyle \Psi (r)=e^{-{\frac {1}{1-r^{2))))\cdot \mathbf {1} _{\{|r|<1\)).}$ This function is a test function on ${\displaystyle \mathbb {R} ^{2))$ and is an element of ${\displaystyle C_{c}^{\infty }\left(\mathbb {R} ^{2}\right).}$ The support of this function is the closed unit disk in ${\displaystyle \mathbb {R} ^{2}.}$ It is non-zero on the open unit disk and it is equal to 0 everywhere outside of it.

For all ${\displaystyle j,k\in \{0,1,2,\ldots ,\infty \))$ and any compact subsets K and L of U, we have:

{\displaystyle {\begin{aligned}C^{k}(K)&\subseteq C_{c}^{k}(U)\subseteq C^{k}(U)\\C^{k}(K)&\subseteq C^{k}(L)&&{\text{if ))K\subseteq L\\C^{k}(K)&\subseteq C^{j}(K)&&{\text{if ))j\leq k\\C_{c}^{k}(U)&\subseteq C_{c}^{j}(U)&&{\text{if ))j\leq k\\C^{k}(U)&\subseteq C^{j}(U)&&{\text{if ))j\leq k\\\end{aligned))}

Definition: Elements of ${\displaystyle C_{c}^{\infty }(U)}$ are called test functions on U and ${\displaystyle C_{c}^{\infty }(U)}$ is called the space of test functions on U. We will use both ${\displaystyle {\mathcal {D))(U)}$ and ${\displaystyle C_{c}^{\infty }(U)}$ to denote this space.

Distributions on U are continuous linear functionals on ${\displaystyle C_{c}^{\infty }(U)}$ when this vector space is endowed with a particular topology called the canonical LF-topology. The following proposition states two necessary and sufficient conditions for the continuity of a linear functional on ${\displaystyle C_{c}^{\infty }(U)}$ that are often straightforward to verify.

Proposition: A linear functional T on ${\displaystyle C_{c}^{\infty }(U)}$ is continuous, and therefore a distribution, if and only if either of the following equivalent conditions are satisfied:

1. For every compact subset ${\displaystyle K\subseteq U}$ there exist constants ${\displaystyle C>0}$ and ${\displaystyle N\in \mathbb {N} }$ (dependent on ${\displaystyle K}$) such that for all ${\displaystyle f\in C_{c}^{\infty }(U)}$ with support contained in ${\displaystyle K}$,[1][2]
${\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\}.}$
2. For every compact subset ${\displaystyle K\subseteq U}$ and every sequence ${\displaystyle \{f_{i}\}_{i=1}^{\infty ))$ in ${\displaystyle C_{c}^{\infty }(U)}$ whose supports are contained in ${\displaystyle K}$, if ${\displaystyle \{\partial ^{\alpha }f_{i}\}_{i=1}^{\infty ))$ converges uniformly to zero on ${\displaystyle U}$ for every multi-index ${\displaystyle \alpha }$, then ${\displaystyle T(f_{i})\to 0.}$

### Topology on Ck(U)

We now introduce the seminorms that will define the topology on ${\displaystyle C^{k}(U).}$ Different authors sometimes use different families of seminorms so we list the most common families below. However, the resulting topology is the same no matter which family is used.

Suppose ${\displaystyle k\in \{0,1,2,\ldots ,\infty \))$ and ${\displaystyle K}$ is an arbitrary compact subset of ${\displaystyle U.}$ Suppose ${\displaystyle i}$ an integer such that ${\displaystyle 0\leq i\leq k.}$[note 1] and ${\displaystyle p}$ is a multi-index with length ${\displaystyle |p|\leq k.}$ For ${\displaystyle K\neq \varnothing ,}$ define:

{\displaystyle {\begin{alignedat}{4}{\text{ (1) ))\ &s_{p,K}(f)&&:=\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (2) ))\ &q_{i,K}(f)&&:=\sup _{|p|\leq i}\left(\sup _{x_{0}\in K}\left|\partial ^{p}f(x_{0})\right|\right)=\sup _{|p|\leq i}\left(s_{p,K}(f)\right)\\[4pt]{\text{ (3) ))\ &r_{i,K}(f)&&:=\sup _{\stackrel {|p|\leq i}{x_{0}\in K))\left|\partial ^{p}f(x_{0})\right|\\[4pt]{\text{ (4) ))\ &t_{i,K}(f)&&:=\sup _{x_{0}\in K}\left(\sum _{|p|\leq i}\left|\partial ^{p}f(x_{0})\right|\right)\end{alignedat))}

while for ${\displaystyle K=\varnothing ,}$ define all the functions above to be the constant 0 map.

Each of the functions above are non-negative ${\displaystyle \mathbb {R} }$-valued[note 2] seminorms on ${\displaystyle C^{k}(U).}$

Each of the following families of seminorms generates the same locally convex vector topology on ${\displaystyle C^{k}(U)}$:

{\displaystyle {\begin{alignedat}{4}(1)\quad &\{q_{i,K}&&:\;K{\text{ compact and ))\;&&i\in \mathbb {N} {\text{ satisfies ))\;&&0\leq i\leq k\}\2)\quad &\{r_{i,K}&&:\;K{\text{ compact and ))\;&&i\in \mathbb {N} {\text{ satisfies ))\;&&0\leq i\leq k\}\\(3)\quad &\{t_{i,K}&&:\;K{\text{ compact and ))\;&&i\in \mathbb {N} {\text{ satisfies ))\;&&0\leq i\leq k\}\\(4)\quad &\{s_{p,K}&&:\;K{\text{ compact and ))\;&&p\in \mathbb {N} ^{n}{\text{ satisfies ))\;&&|p|\leq k\}\end{alignedat))} The vector space ${\displaystyle C^{k}(U)}$ is endowed with the locally convex topology induced by any one of the four families of seminorms described above; equivalently, the topology is the vector topology induced by all of the seminorms above (that is, by the union of the four families of seminorms). With this topology, ${\displaystyle C^{k}(U)}$ becomes a locally convex (non-normable) Fréchet space and all of the seminorms defined above are continuous on this space. All of the seminorms defined above are continuous functions on ${\displaystyle C^{k}(U).}$ Under this topology, a net ${\displaystyle (f_{i})_{i\in I))$ in ${\displaystyle C^{k}(U)}$ converges to ${\displaystyle f\in C^{k}(U)}$ if and only if for every multi-index ${\displaystyle p}$ with ${\displaystyle |p| and every compact ${\displaystyle K,}$ the net of partial derivatives ${\displaystyle \left(\partial ^{p}f_{i}\right)_{i\in I))$ converges uniformly to ${\displaystyle \partial ^{p}f}$ on ${\displaystyle K.}$[3] For any ${\displaystyle k\in \{0,1,2,\ldots ,\infty \},}$ any (von Neumann) bounded subset of ${\displaystyle C^{k+1}(U)}$ is a relatively compact subset of ${\displaystyle C^{k}(U).}$[4] In particular, a subset of ${\displaystyle C^{\infty }(U)}$ is bounded if and only if it is bounded in ${\displaystyle C^{i}(U)}$ for all ${\displaystyle i\in \mathbb {N} .}$[4] The space ${\displaystyle C^{k}(U)}$ is a Montel space if and only if ${\displaystyle k=\infty .}$[5] A subset ${\displaystyle W}$ of ${\displaystyle C^{\infty }(U)}$ is open in this topology if and only if there exists ${\displaystyle i\in \mathbb {N} }$ such that ${\displaystyle W}$ is open when ${\displaystyle C^{\infty }(U)}$ is endowed with the subspace topology induced on it by ${\displaystyle C^{i}(U).}$ #### Topology on Ck(K) As before, fix ${\displaystyle k\in \{0,1,2,\ldots ,\infty \}.}$ Recall that if ${\displaystyle K}$ is any compact subset of ${\displaystyle U}$ then ${\displaystyle C^{k}(K)\subseteq C^{k}(U).}$ Assumption: For any compact subset ${\displaystyle K\subseteq U,}$ we will henceforth assume that ${\displaystyle C^{k}(K)}$ is endowed with the subspace topology it inherits from the Fréchet space ${\displaystyle C^{k}(U).}$ If ${\displaystyle k}$ is finite then ${\displaystyle C^{k}(K)}$ is a Banach space[6] with a topology that can be defined by the norm ${\displaystyle r_{K}(f):=\sup _{|p| And when ${\displaystyle k=2,}$ then ${\displaystyle C^{k}(K)}$ is even a Hilbert space.[6] #### Trivial extensions and independence of Ck(K)'s topology from U The definition of ${\displaystyle C^{k}(K)}$ depends on U so we will let ${\displaystyle C^{k}(K;U)}$ denote the topological space ${\displaystyle C^{k}(K),}$ which by definition is a topological subspace of ${\displaystyle C^{k}(U).}$ Suppose ${\displaystyle V}$ is an open subset of ${\displaystyle \mathbb {R} ^{n))$ containing ${\displaystyle U}$ and for any compact subset ${\displaystyle K\subseteq V,}$ let ${\displaystyle C^{k}(K;V)}$ is the vector subspace of ${\displaystyle C^{k}(V)}$ consisting of maps with support contained in ${\displaystyle K.}$ Given ${\displaystyle f\in C_{c}^{k}(U),}$ its trivial extension to V is by definition, the function ${\displaystyle I(f):=F:V\to \mathbb {C} }$ defined by: ${\displaystyle F(x)={\begin{cases}f(x)&x\in U,\\0&{\text{otherwise)),\end{cases))}$ so that ${\displaystyle F\in C^{k}(V).}$ Let ${\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}$ denote the map that sends a function in ${\displaystyle C_{c}^{k}(U)}$ to its trivial extension on V. This map is a linear injection and for every compact subset ${\displaystyle K\subseteq U}$ (where ${\displaystyle K}$ is also a compact subset of ${\displaystyle V}$ since ${\displaystyle K\subseteq U\subseteq V}$) we have {\displaystyle {\begin{alignedat}{4}I\left(C^{k}(K;U)\right)&~=~C^{k}(K;V)\qquad {\text{ and thus ))\\I\left(C_{c}^{k}(U)\right)&~\subseteq ~C_{c}^{k}(V)\end{alignedat))} If I is restricted to ${\displaystyle C^{k}(K;U)}$ then the following induced linear map is a homeomorphism (and thus a TVS-isomorphism): {\displaystyle {\begin{alignedat}{4}\,&C^{k}(K;U)&&\to \,&&C^{k}(K;V)\\&f&&\mapsto \,&&I(f)\\\end{alignedat))} and thus the next map is a topological embedding: {\displaystyle {\begin{alignedat}{4}\,&C^{k}(K;U)&&\to \,&&C^{k}(V)\\&f&&\mapsto \,&&I(f).\\\end{alignedat))} Using the injection ${\displaystyle I:C_{c}^{k}(U)\to C^{k}(V)}$ the vector space ${\displaystyle C_{c}^{k}(U)}$ is canonically identified with its image in ${\displaystyle C_{c}^{k}(V)\subseteq C^{k}(V).}$ Because ${\displaystyle C^{k}(K;U)\subseteq C_{c}^{k}(U),}$ through this identification, ${\displaystyle C^{k}(K;U)}$ can also be considered as a subset of ${\displaystyle C^{k}(V).}$ Thus the topology on ${\displaystyle C^{k}(K;U)}$ is independent of the open subset U of ${\displaystyle \mathbb {R} ^{n))$ that contains K.[7] This justifies the practice of written ${\displaystyle C^{k}(K)}$ instead of ${\displaystyle C^{k}(K;U).}$ ### Canonical LF topology  Main article: Spaces of test functions and distributions  See also: LF-space and Topology of uniform convergence Recall that ${\displaystyle C_{c}^{k}(U)}$ denote all those functions in ${\displaystyle C^{k}(U)}$ that have compact support in ${\displaystyle U,}$ where note that ${\displaystyle C_{c}^{k}(U)}$ is the union of all ${\displaystyle C^{k}(K)}$ as ${\displaystyle K}$ ranges over all compact subsets of ${\displaystyle U.}$ Moreover, for every ${\displaystyle k,\,C_{c}^{k}(U)}$ is a dense subset of ${\displaystyle C^{k}(U).}$ The special case when ${\displaystyle k=\infty }$ gives us the space of test functions. ${\displaystyle C_{c}^{\infty }(U)}$ is called the space of test functions on ${\displaystyle U}$ and it may also be denoted by ${\displaystyle {\mathcal {D))(U).}$ Unless indicated otherwise, it is endowed with a topology called the canonical LF topology, whose definition is given in the article: Spaces of test functions and distributions. The canonical LF-topology is not metrizable and importantly, it is strictly finer than the subspace topology that ${\displaystyle C^{\infty }(U)}$ induces on ${\displaystyle C_{c}^{\infty }(U).}$ However, the canonical LF-topology does make ${\displaystyle C_{c}^{\infty }(U)}$ into a complete reflexive nuclear[8] Montel[9] bornological barrelled Mackey space; the same is true of its strong dual space (that is, the space of all distributions with its usual topology). The canonical LF-topology can be defined in various ways. ### Distributions  See also: Continuous linear functional As discussed earlier, continuous linear functionals on a ${\displaystyle C_{c}^{\infty }(U)}$ are known as distributions on ${\displaystyle U.}$ Other equivalent definitions are described below. By definition, a distribution on ${\displaystyle U}$ is a continuous linear functional on ${\displaystyle C_{c}^{\infty }(U).}$ Said differently, a distribution on ${\displaystyle U}$ is an element of the continuous dual space of ${\displaystyle C_{c}^{\infty }(U)}$ when ${\displaystyle C_{c}^{\infty }(U)}$ is endowed with its canonical LF topology. There is a canonical duality pairing between a distribution ${\displaystyle T}$ on ${\displaystyle U}$ and a test function ${\displaystyle f\in C_{c}^{\infty }(U),}$ which is denoted using angle brackets by ${\displaystyle {\begin{cases}{\mathcal {D))'(U)\times C_{c}^{\infty }(U)\to \mathbb {R} \\(T,f)\mapsto \langle T,f\rangle :=T(f)\end{cases))}$ One interprets this notation as the distribution ${\displaystyle T}$ acting on the test function ${\displaystyle f}$ to give a scalar, or symmetrically as the test function ${\displaystyle f}$ acting on the distribution ${\displaystyle T.}$ #### Characterizations of distributions Proposition. If ${\displaystyle T}$ is a linear functional on ${\displaystyle C_{c}^{\infty }(U)}$ then the following are equivalent: 1. T is a distribution; 2. T is continuous; 3. T is continuous at the origin; 4. T is uniformly continuous; 5. T is a bounded operator; 6. T is sequentially continuous; • explicitly, for every sequence ${\displaystyle \left(f_{i}\right)_{i=1}^{\infty ))$ in ${\displaystyle C_{c}^{\infty }(U)}$ that converges in ${\displaystyle C_{c}^{\infty }(U)}$ to some ${\displaystyle f\in C_{c}^{\infty }(U),}$ ${\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=T(f);}$[note 3] 7. T is sequentially continuous at the origin; in other words, T maps null sequences[note 4] to null sequences; • explicitly, for every sequence ${\displaystyle \left(f_{i}\right)_{i=1}^{\infty ))$ in ${\displaystyle C_{c}^{\infty }(U)}$ that converges in ${\displaystyle C_{c}^{\infty }(U)}$ to the origin (such a sequence is called a null sequence), ${\textstyle \lim _{i\to \infty }T\left(f_{i}\right)=0;}$ • a null sequence is by definition any sequence that converges to the origin; 8. T maps null sequences to bounded subsets; • explicitly, for every sequence ${\displaystyle \left(f_{i}\right)_{i=1}^{\infty ))$ in ${\displaystyle C_{c}^{\infty }(U)}$ that converges in ${\displaystyle C_{c}^{\infty }(U)}$ to the origin, the sequence ${\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty ))$ is bounded; 9. T maps Mackey convergent null sequences to bounded subsets; • explicitly, for every Mackey convergent null sequence ${\displaystyle \left(f_{i}\right)_{i=1}^{\infty ))$ in ${\displaystyle C_{c}^{\infty }(U),}$ the sequence ${\displaystyle \left(T\left(f_{i}\right)\right)_{i=1}^{\infty ))$ is bounded; • a sequence ${\displaystyle f_{\bullet }=\left(f_{i}\right)_{i=1}^{\infty ))$ is said to be Mackey convergent to the origin if there exists a divergent sequence ${\displaystyle r_{\bullet }=\left(r_{i}\right)_{i=1}^{\infty }\to \infty }$ of positive real number such that the sequence ${\displaystyle \left(r_{i}f_{i}\right)_{i=1}^{\infty ))$ is bounded; every sequence that is Mackey convergent to the origin necessarily converges to the origin (in the usual sense); 10. The kernel of T is a closed subspace of ${\displaystyle C_{c}^{\infty }(U);}$ 11. The graph of T is closed; 12. There exists a continuous seminorm ${\displaystyle g}$ on ${\displaystyle C_{c}^{\infty }(U)}$ such that ${\displaystyle |T|\leq g;}$ 13. There exists a constant ${\displaystyle C>0}$ and a finite subset ${\displaystyle \{g_{1},\ldots ,g_{m}\}\subseteq {\mathcal {P))}$ (where ${\displaystyle {\mathcal {P))}$ is any collection of continuous seminorms that defines the canonical LF topology on ${\displaystyle C_{c}^{\infty }(U)}$) such that ${\displaystyle |T|\leq C(g_{1}+\cdots +g_{m});}$[note 5] 14. For every compact subset ${\displaystyle K\subseteq U}$ there exist constants ${\displaystyle C>0}$ and ${\displaystyle N\in \mathbb {N} }$ such that for all ${\displaystyle f\in C^{\infty }(K),}$[1] ${\displaystyle |T(f)|\leq C\sup\{|\partial ^{\alpha }f(x)|:x\in U,|\alpha |\leq N\};}$ 15. For every compact subset ${\displaystyle K\subseteq U}$ there exist constants ${\displaystyle C_{K}>0}$ and ${\displaystyle N_{K}\in \mathbb {N} }$ such that for all ${\displaystyle f\in C_{c}^{\infty }(U)}$ with support contained in ${\displaystyle K,}$[10] ${\displaystyle |T(f)|\leq C_{K}\sup\{|\partial ^{\alpha }f(x)|:x\in K,|\alpha |\leq N_{K}\};}$ 16. For any compact subset ${\displaystyle K\subseteq U}$ and any sequence ${\displaystyle \{f_{i}\}_{i=1}^{\infty ))$ in ${\displaystyle C^{\infty }(K),}$ if ${\displaystyle \{\partial ^{p}f_{i}\}_{i=1}^{\infty ))$ converges uniformly to zero for all multi-indices ${\displaystyle p,}$ then ${\displaystyle T(f_{i})\to 0;}$ #### Topology on the space of distributions and its relation to the weak-* topology The set of all distributions on ${\displaystyle U}$ is the continuous dual space of ${\displaystyle C_{c}^{\infty }(U),}$ which when endowed with the strong dual topology is denoted by ${\displaystyle {\mathcal {D))'(U).}$ Importantly, unless indicated otherwise, the topology on ${\displaystyle {\mathcal {D))'(U)}$ is the strong dual topology; if the topology is instead the weak-* topology then this will be clearly indicated. Neither topology is metrizable although unlike the weak-* topology, the strong dual topology makes ${\displaystyle {\mathcal {D))'(U)}$ into a complete nuclear space, to name just a few of its desirable properties. Neither ${\displaystyle C_{c}^{\infty }(U)}$ nor its strong dual ${\displaystyle {\mathcal {D))'(U)}$ is a sequential space and so neither of their topologies can be fully described by sequences (in other words, defining only what sequences converge in these spaces is not enough to fully/correctly define their topologies). However, a sequence in ${\displaystyle {\mathcal {D))'(U)}$ converges in the strong dual topology if and only if it converges in the weak-* topology (this leads many authors to use pointwise convergence to actually define the convergence of a sequence of distributions; this is fine for sequences but this is not guaranteed to extend to the convergence of nets of distributions because a net may converge pointwise but fail to converge in the strong dual topology). More information about the topology that ${\displaystyle {\mathcal {D))'(U)}$ is endowed with can be found in the article on spaces of test functions and distributions and in the articles on polar topologies and dual systems. A linear map from ${\displaystyle {\mathcal {D))'(U)}$ into another locally convex topological vector space (such as any normed space) is continuous if and only if it is sequentially continuous at the origin. However, this is no longer guaranteed if the map is not linear or for maps valued in more general topological spaces (for example, that are not also locally convex topological vector spaces). The same is true of maps from ${\displaystyle C_{c}^{\infty }(U)}$ (more generally, this is true of maps from any locally convex bornological space). ## Localization of distributions There is no way to define the value of a distribution in ${\displaystyle {\mathcal {D))'(U)}$ at a particular point of U. However, as is the case with functions, distributions on U restrict to give distributions on open subsets of U. Furthermore, distributions are locally determined in the sense that a distribution on all of U can be assembled from a distribution on an open cover of U satisfying some compatibility conditions on the overlaps. Such a structure is known as a sheaf. ### Extensions and restrictions to an open subset Let U and V be open subsets of ${\displaystyle \mathbb {R} ^{n))$ with ${\displaystyle V\subseteq U.}$ Let ${\displaystyle E_{VU}:{\mathcal {D))(V)\to {\mathcal {D))(U)}$ be the operator which extends by zero a given smooth function compactly supported in V to a smooth function compactly supported in the larger set U. The map ${\displaystyle E_{VU}:{\mathcal {D))(V)\to {\mathcal {D))(U)}$ is a continuous injection. A distribution ${\displaystyle S\in {\mathcal {D))'(V)}$ is said to be extendible to U if it belongs to the range of the transpose of ${\displaystyle E_{VU))$ and it is called extendible if it is extendable to ${\displaystyle \mathbb {R} ^{n}.}$[11] For any distribution ${\displaystyle T\in {\mathcal {D))'(U),}$ the restriction ${\displaystyle \rho _{VU}(T)}$ is a distribution in ${\displaystyle {\mathcal {D))'(V)}$ defined as the transpose of ${\displaystyle E_{VU))$ by ${\displaystyle \langle \rho _{VU}T,\phi \rangle =\langle T,E_{VU}\phi \rangle \quad {\text{ for all ))\phi \in {\mathcal {D))(V).}$ Unless ${\displaystyle U=V,}$ the restriction to V is neither injective nor surjective. Lack of surjectivity follows since distributions can blow up towards the boundary of V. For instance, if ${\displaystyle U=\mathbb {R} }$ and ${\displaystyle V=(0,2),}$ then the distribution ${\displaystyle T(x)=\sum _{n=1}^{\infty }n\,\delta \left(x-{\frac {1}{n))\right)}$ is in ${\displaystyle {\mathcal {D))'(V)}$ but admits no extension to ${\displaystyle {\mathcal {D))'(U).}$ ### Gluing and distributions that vanish in a set Theorem[12] — Let ${\displaystyle (U_{i})_{i\in I))$ be a collection of open subsets of ${\displaystyle \mathbb {R} ^{n}.}$ For each ${\displaystyle i\in I,}$ let ${\displaystyle T_{i}\in {\mathcal {D))'(U_{i})}$ and suppose that for all ${\displaystyle i,j\in I,}$ the restriction of ${\displaystyle T_{i))$ to ${\displaystyle U_{i}\cap U_{j))$ is equal to the restriction of ${\displaystyle T_{j))$ to ${\displaystyle U_{i}\cap U_{j))$ (note that both restrictions are elements of ${\displaystyle {\mathcal {D))'(U_{i}\cap U_{j})}$). Then there exists a unique ${\textstyle T\in {\mathcal {D))'(\bigcup _{i\in I}U_{i})}$ such that for all ${\displaystyle i\in I,}$ the restriction of T to ${\displaystyle U_{i))$ is equal to ${\displaystyle T_{i}.}$ Let V be an open subset of U. ${\displaystyle T\in {\mathcal {D))'(U)}$ is said to vanish in V if for all ${\displaystyle f\in {\mathcal {D))(U)}$ such that ${\displaystyle \operatorname {supp} (f)\subseteq V}$ we have ${\displaystyle Tf=0.}$ T vanishes in V if and only if the restriction of T to V is equal to 0, or equivalently, if and only if T lies in the kernel of the restriction map ${\displaystyle \rho _{VU}.}$ Corollary[12] — Let ${\displaystyle (U_{i})_{i\in I))$ be a collection of open subsets of ${\displaystyle \mathbb {R} ^{n))$ and let ${\textstyle T\in {\mathcal {D))'(\bigcup _{i\in I}U_{i}).}$ ${\displaystyle T=0}$ if and only if for each ${\displaystyle i\in I,}$ the restriction of T to ${\displaystyle U_{i))$ is equal to 0. Corollary[12] — The union of all open subsets of U in which a distribution T vanishes is an open subset of U in which T vanishes. ### Support of a distribution This last corollary implies that for every distribution T on U, there exists a unique largest subset V of U such that T vanishes in V (and does not vanish in any open subset of U that is not contained in V); the complement in U of this unique largest open subset is called the support of T.[12] Thus ${\displaystyle \operatorname {supp} (T)=U\setminus \bigcup \{V\mid \rho _{VU}T=0\}.}$ If ${\displaystyle f}$ is a locally integrable function on U and if ${\displaystyle D_{f))$ is its associated distribution, then the support of ${\displaystyle D_{f))$ is the smallest closed subset of U in the complement of which ${\displaystyle f}$ is almost everywhere equal to 0.[12] If ${\displaystyle f}$ is continuous, then the support of ${\displaystyle D_{f))$ is equal to the closure of the set of points in U at which ${\displaystyle f}$ does not vanish.[12] The support of the distribution associated with the Dirac measure at a point ${\displaystyle x_{0))$ is the set ${\displaystyle \{x_{0}\}.}$[12] If the support of a test function ${\displaystyle f}$ does not intersect the support of a distribution T then ${\displaystyle Tf=0.}$ A distribution T is 0 if and only if its support is empty. If ${\displaystyle f\in C^{\infty }(U)}$ is identically 1 on some open set containing the support of a distribution T then ${\displaystyle fT=T.}$ If the support of a distribution T is compact then it has finite order and furthermore, there is a constant ${\displaystyle C}$ and a non-negative integer ${\displaystyle N}$ such that:[7] ${\displaystyle |T\phi |\leq C\|\phi \|_{N}:=C\sup \left\{\left|\partial ^{\alpha }\phi (x)\right|:x\in U,|\alpha |\leq N\right\}\quad {\text{ for all ))\phi \in {\mathcal {D))(U).}$ If T has compact support then it has a unique extension to a continuous linear functional ${\displaystyle {\widehat {T))}$ on ${\displaystyle C^{\infty }(U)}$; this functional can be defined by ${\displaystyle {\widehat {T))(f):=T(\psi f),}$ where ${\displaystyle \psi \in {\mathcal {D))(U)}$ is any function that is identically 1 on an open set containing the support of T.[7] If ${\displaystyle S,T\in {\mathcal {D))'(U)}$ and ${\displaystyle \lambda \neq 0}$ then ${\displaystyle \operatorname {supp} (S+T)\subseteq \operatorname {supp} (S)\cup \operatorname {supp} (T)}$ and ${\displaystyle \operatorname {supp} (\lambda T)=\operatorname {supp} (T).}$ Thus, distributions with support in a given subset ${\displaystyle A\subseteq U}$ form a vector subspace of ${\displaystyle {\mathcal {D))'(U).}$[13] Furthermore, if ${\displaystyle P}$ is a differential operator in U, then for all distributions T on U and all ${\displaystyle f\in C^{\infty }(U)}$ we have ${\displaystyle \operatorname {supp} (P(x,\partial )T)\subseteq \operatorname {supp} (T)}$ and ${\displaystyle \operatorname {supp} (fT)\subseteq \operatorname {supp} (f)\cap \operatorname {supp} (T).}$[13] ### Distributions with compact support #### Support in a point set and Dirac measures For any ${\displaystyle x\in U,}$ let ${\displaystyle \delta _{x}\in {\mathcal {D))'(U)}$ denote the distribution induced by the Dirac measure at ${\displaystyle x.}$ For any ${\displaystyle x_{0}\in U}$ and distribution ${\displaystyle T\in {\mathcal {D))'(U),}$ the support of T is contained in ${\displaystyle \{x_{0})$ if and only if T is a finite linear combination of derivatives of the Dirac measure at ${\displaystyle x_{0}.}$[14] If in addition the order of T is ${\displaystyle \leq k}$ then there exist constants ${\displaystyle \alpha _{p))$ such that:[15]

${\displaystyle T=\sum _{|p|\leq k}\alpha _{p}\partial ^{p}\delta _{x_{0)).}$

Said differently, if T has support at a single point ${\displaystyle \{P\},}$ then T is in fact a finite linear combination of distributional derivatives of the ${\displaystyle \delta }$ function at P. That is, there exists an integer m and complex constants ${\displaystyle a_{\alpha ))$ such that

${\displaystyle T=\sum _{|\alpha |\leq m}a_{\alpha }\partial ^{\alpha }(\tau _{P}\delta )}$
where ${\displaystyle \tau _{P))$ is the translation operator.

#### Distribution with compact support

Theorem[7] — Suppose T is a distribution on U with compact support K. There exists a continuous function ${\displaystyle f}$ defined on U and a multi-index p such that

${\displaystyle T=\partial ^{p}f,}$
where the derivatives are understood in the sense of distributions. That is, for all test functions ${\displaystyle \phi }$ on U,
${\displaystyle T\phi =(-1)^{|p|}\int _{U}f(x)(\partial ^{p}\phi )(x)\,dx.}$

#### Distributions of finite order with support in an open subset

Theorem[7] — Suppose T is a distribution on U with compact support K and let V be an open subset of U containing K. Since every distribution with compact support has finite order, take N to be the order of T and define ${\displaystyle P:=\{0,1,\ldots ,N+2\}^{n}.}$ There exists a family of continuous functions ${\displaystyle (f_{p})_{p\in P))$ defined on U with support in V such that

${\displaystyle T=\sum _{p\in P}\partial ^{p}f_{p},}$
where the derivatives are understood in the sense of distributions. That is, for all test functions ${\displaystyle \phi }$ on U,
${\displaystyle T\phi =\sum _{p\in P}(-1)^{|p|}\int _{U}f_{p}(x)(\partial ^{p}\phi )(x)\,dx.}$

### Global structure of distributions

The formal definition of distributions exhibits them as a subspace of a very large space, namely the topological dual of ${\displaystyle {\mathcal {D))(U)}$ (or the Schwartz space ${\displaystyle {\mathcal {S))(\mathbb {R} ^{n})}$ for tempered distributions). It is not immediately clear from the definition how exotic a distribution might be. To answer this question, it is instructive to see distributions built up from a smaller space, namely the space of continuous functions. Roughly, any distribution is locally a (multiple) derivative of a continuous function. A precise version of this result, given below, holds for distributions of compact support, tempered distributions, and general distributions. Generally speaking, no proper subset of the space of distributions contains all continuous functions and is closed under differentiation. This says that distributions are not particularly exotic objects; they are only as complicated as necessary.

#### Distributions as sheaves

Theorem[16] — Let T be a distribution on U. There exists a sequence ${\displaystyle (T_{i})_{i=1}^{\infty ))$ in ${\displaystyle {\mathcal {D))'(U)}$ such that each Ti has compact support and every compact subset ${\displaystyle K\subseteq U}$ intersects the support of only finitely many ${\displaystyle T_{i},}$ and the sequence of partial sums ${\displaystyle (S_{j})_{j=1}^{\infty },}$ defined by ${\displaystyle S_{j}:=T_{1}+\cdots +T_{j},}$ converges in ${\displaystyle {\mathcal {D))'(U)}$ to T; in other words we have:

${\displaystyle T=\sum _{i=1}^{\infty }T_{i}.}$
Recall that a sequence converges in ${\displaystyle {\mathcal {D))'(U)}$ (with its strong dual topology) if and only if it converges pointwise.

#### Decomposition of distributions as sums of derivatives of continuous functions

By combining the above results, one may express any distribution on U as the sum of a series of distributions with compact support, where each of these distributions can in turn be written as a finite sum of distributional derivatives of continuous functions on U. In other words, for arbitrary ${\displaystyle T\in {\mathcal {D))'(U)}$ we can write:

${\displaystyle T=\sum _{i=1}^{\infty }\sum _{p\in P_{i))\partial ^{p}f_{ip},}$
where ${\displaystyle P_{1},P_{2},\ldots }$ are finite sets of multi-indices and the functions ${\displaystyle f_{ip))$ are continuous.

Theorem[17] — Let T be a distribution on U. For every multi-index p there exists a continuous function ${\displaystyle g_{p))$ on U such that

1. any compact subset K of U intersects the support of only finitely many ${\displaystyle g_{p},}$ and
2. ${\displaystyle T=\sum \nolimits _{p}\partial ^{p}g_{p}.}$

Moreover, if T has finite order, then one can choose ${\displaystyle g_{p))$ in such a way that only finitely many of them are non-zero.

Note that the infinite sum above is well-defined as a distribution. The value of T for a given ${\displaystyle f\in {\mathcal {D))(U)}$ can be computed using the finitely many ${\displaystyle g_{\alpha ))$ that intersect the support of ${\displaystyle f.}$

## Operations on distributions

Many operations which are defined on smooth functions with compact support can also be defined for distributions. In general, if ${\displaystyle A:{\mathcal {D))(U)\to {\mathcal {D))(U)}$ is a linear map which is continuous with respect to the weak topology, then it is possible to extend A to a map ${\displaystyle A:{\mathcal {D))'(U)\to {\mathcal {D))'(U)}$ by passing to the limit.[note 6][citation needed][clarification needed]

### Preliminaries: Transpose of a linear operator

 Main article: Transpose of a linear map

Operations on distributions and spaces of distributions are often defined by means of the transpose of a linear operator. This is because the transpose allows for a unified presentation of the many definitions in the theory of distributions and also because its properties are well known in functional analysis.[18] For instance, the well-known Hermitian adjoint of a linear operator between Hilbert spaces is just the operator's transpose (but with the Riesz representation theorem used to identify each Hilbert space with its continuous dual space). In general the transpose of a continuous linear map ${\displaystyle A:X\to Y}$ is the linear map

${\displaystyle {}^{t}A:Y'\to X'\qquad {\text{ defined by ))\qquad {}^{t}A(y'):=y'\circ A,}$
or equivalently, it is the unique map satisfying ${\displaystyle \langle y',A(x)\rangle =\left\langle {}^{t}A(y'),x\right\rangle }$ for all ${\displaystyle x\in X}$ and all ${\displaystyle y'\in Y'}$ (the prime symbol in ${\displaystyle y'}$ does not denote a derivative of any kind; it merely indicates that ${\displaystyle y'}$ is an element of the continuous dual space ${\displaystyle Y'}$). Since A is continuous, the transpose ${\displaystyle {}^{t}A:Y'\to X'}$ is also continuous when both duals are endowed with their respective strong dual topologies; it is also continuous when both duals are endowed with their respective weak* topologies (see the articles polar topology and dual system for more details).

In the context of distributions, the characterization of the transpose can be refined slightly. Let ${\displaystyle A:{\mathcal {D))(U)\to {\mathcal {D))(U)}$ be a continuous linear map. Then by definition, the transpose of A is the unique linear operator ${\displaystyle A^{t}:{\mathcal {D))'(U)\to {\mathcal {D))'(U)}$ that satisfies:

${\displaystyle \langle {}^{t}A(T),\phi \rangle =\langle T,A(\phi )\rangle \quad {\text{ for all ))\phi \in {\mathcal {D))(U){\text{ and all ))T\in {\mathcal {D))'(U).}$

However, since the image of ${\displaystyle {\mathcal {D))(U)}$ is dense in ${\displaystyle {\mathcal {D))'(U),}$ it is sufficient that the above equality hold for all distributions of the form ${\displaystyle T=D_{\psi ))$ where ${\displaystyle \psi \in {\mathcal {D))(U).}$ Explicitly, this means that the above condition holds if and only if the condition below holds:

${\displaystyle \langle {}^{t}A(D_{\psi }),\phi \rangle =\langle D_{\psi },A(\phi )\rangle =\langle \psi ,A(\phi )\rangle =\int _{U}\psi (A\phi )\,dx\quad {\text{ for all ))\phi ,\psi \in {\mathcal {D))(U).}$

### Differential operators

#### Differentiation of distributions

Let ${\displaystyle A:{\mathcal {D))(U)\to {\mathcal {D))(U)}$ be the partial derivative operator ${\displaystyle {\tfrac {\partial }{\partial x_{k))}.}$ In order to extend ${\displaystyle A}$ we compute its transpose:

{\displaystyle {\begin{aligned}\langle {}^{t}A(D_{\psi }),\phi \rangle &=\int _{U}\psi (A\phi )\,dx&&{\text{(See above.)))\\&=\int _{U}\psi {\frac {\partial \phi }{\partial x_{k))}\,dx\\[4pt]&=-\int _{U}\phi {\frac {\partial \psi }{\partial x_{k))}\,dx&&{\text{(integration by parts)))\\[4pt]&=-\left\langle {\frac {\partial \psi }{\partial x_{k))},\phi \right\rangle \\[4pt]&=-\langle A\psi ,\phi \rangle =\langle -A\psi ,\phi \rangle \end{aligned))}

Therefore ${\displaystyle {}^{t}A=-A.}$ Therefore, the partial derivative of ${\displaystyle T}$ with respect to the coordinate ${\displaystyle x_{k))$ is defined by the formula

${\displaystyle \left\langle {\frac {\partial T}{\partial x_{k))},\phi \right\rangle =-\left\langle T,{\frac {\partial \phi }{\partial x_{k))}\right\rangle \qquad {\text{ for all ))\phi \in {\mathcal {D))(U).}$

With this definition, every distribution is infinitely differentiable, and the derivative in the direction ${\displaystyle x_{k))$ is a linear operator on ${\displaystyle {\mathcal {D))'(U).}$

More generally, if ${\displaystyle \alpha }$ is an arbitrary multi-index, then the partial derivative ${\displaystyle \partial ^{\alpha }T}$ of the distribution ${\displaystyle T\in {\mathcal {D))'(U)}$ is defined by

${\displaystyle \langle \partial ^{\alpha }T,\phi \rangle =(-1)^{|\alpha |}\langle T,\partial ^{\alpha }\phi \rangle \qquad {\text{ for all ))\phi \in {\mathcal {D))(U).}$

Differentiation of distributions is a continuous operator on ${\displaystyle {\mathcal {D))'(U);}$ this is an important and desirable property that is not shared by most other notions of differentiation.

If T is a distribution in ${\displaystyle \mathbb {R} }$ then

${\displaystyle \lim _{x\to 0}{\frac {T-\tau _{x}T}{x))=T'\in {\mathcal {D))'(\mathbb {R} ),}$
where ${\displaystyle T'}$ is the derivative of T and ${\displaystyle \tau _{x))$ is translation by x; thus the derivative of T may be viewed as a limit of quotients.[19]

#### Differential operators acting on smooth functions

A linear differential operator in U with smooth coefficients acts on the space of smooth functions on ${\displaystyle U.}$ Given such an operator ${\textstyle P:=\sum _{\alpha }c_{\alpha }\partial ^{\alpha },}$ we would like to define a continuous linear map, ${\displaystyle D_{P))$ that extends the action of ${\displaystyle P}$ on ${\displaystyle C^{\infty }(U)}$ to distributions on ${\displaystyle U.}$ In other words, we would like to define ${\displaystyle D_{P))$ such that the following diagram commutes:

${\displaystyle {\begin{matrix}{\mathcal {D))'(U)&{\stackrel {D_{P)){\longrightarrow ))&{\mathcal {D))'(U)\\[2pt]\uparrow &&\uparrow \\[2pt]C^{\infty }(U)&{\stackrel {P}{\longrightarrow ))&C^{\infty }(U)\end{matrix))}$
where the vertical maps are given by assigning ${\displaystyle f\in C^{\infty }(U)}$ its canonical distribution ${\displaystyle D_{f}\in {\mathcal {D))'(U),}$ which is defined by:
${\displaystyle D_{f}(\phi )=\langle f,\phi \rangle :=\int _{U}f(x)\phi (x)\,dx\quad {\text{ for all ))\phi \in {\mathcal {D))(U).}$
With this notation the diagram commuting is equivalent to:
${\displaystyle D_{P(f)}=D_{P}D_{f}\qquad {\text{ for all ))f\in C^{\infty }(U).}$

In order to find ${\displaystyle D_{P},}$ the transpose ${\displaystyle {}^{t}P:{\mathcal {D))'(U)\to {\mathcal {D))'(U)}$ of the continuous induced map ${\displaystyle P:{\mathcal {D))(U)\to {\mathcal {D))(U)}$ defined by ${\displaystyle \phi \mapsto P(\phi )}$ is considered in the lemma below. This leads to the following definition of the differential operator on ${\displaystyle U}$ called the formal transpose of ${\displaystyle P,}$ which will be denoted by ${\displaystyle P_{*))$ to avoid confusion with the transpose map, that is defined by

${\displaystyle P_{*}:=\sum _{\alpha }b_{\alpha }\partial ^{\alpha }\quad {\text{ where ))\quad b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha ))\partial ^{\beta -\alpha }c_{\beta }.}$

Lemma — Let ${\displaystyle P}$ be a linear differential operator with smooth coefficients in ${\displaystyle U.}$ Then for all ${\displaystyle \phi \in {\mathcal {D))(U)}$ we have

${\displaystyle \left\langle {}^{t}P(D_{f}),\phi \right\rangle =\left\langle D_{P_{*}(f)},\phi \right\rangle ,}$
which is equivalent to:
${\displaystyle {}^{t}P(D_{f})=D_{P_{*}(f)}.}$

Proof

As discussed above, for any ${\displaystyle \phi \in {\mathcal {D))(U),}$ the transpose may be calculated by:

{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &=\int _{U}f(x)P(\phi )(x)\,dx\\&=\int _{U}f(x)\left[\sum \nolimits _{\alpha }c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\right]\,dx\\&=\sum \nolimits _{\alpha }\int _{U}f(x)c_{\alpha }(x)(\partial ^{\alpha }\phi )(x)\,dx\\&=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\end{aligned))}

For the last line we used integration by parts combined with the fact that ${\displaystyle \phi }$ and therefore all the functions ${\displaystyle f(x)c_{\alpha }(x)\partial ^{\alpha }\phi (x)}$ have compact support.[note 7] Continuing the calculation above, for all ${\displaystyle \phi \in {\mathcal {D))(U):}$

{\displaystyle {\begin{aligned}\left\langle {}^{t}P(D_{f}),\phi \right\rangle &=\sum \nolimits _{\alpha }(-1)^{|\alpha |}\int _{U}\phi (x)(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx&&{\text{As shown above))\\[4pt]&=\int _{U}\phi (x)\sum \nolimits _{\alpha }(-1)^{|\alpha |}(\partial ^{\alpha }(c_{\alpha }f))(x)\,dx\\[4pt]&=\int _{U}\phi (x)\sum _{\alpha }\left[\sum _{\gamma \leq \alpha }{\binom {\alpha }{\gamma ))(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx&&{\text{Leibniz rule))\\&=\int _{U}\phi (x)\left[\sum _{\alpha }\sum _{\gamma \leq \alpha }(-1)^{|\alpha |}{\binom {\alpha }{\gamma ))(\partial ^{\gamma }c_{\alpha })(x)(\partial ^{\alpha -\gamma }f)(x)\right]\,dx\\&=\int _{U}\phi (x)\left[\sum _{\alpha }\left[\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha ))\left(\partial ^{\beta -\alpha }c_{\beta }\right)(x)\right](\partial ^{\alpha }f)(x)\right]\,dx&&{\text{Grouping terms by derivatives of ))f\\&=\int _{U}\phi (x)\left[\sum \nolimits _{\alpha }b_{\alpha }(x)(\partial ^{\alpha }f)(x)\right]\,dx&&b_{\alpha }:=\sum _{\beta \geq \alpha }(-1)^{|\beta |}{\binom {\beta }{\alpha ))\partial ^{\beta -\alpha }c_{\beta }\\&=\left\langle \left(\sum \nolimits _{\alpha }b_{\alpha }\partial ^{\alpha }\right)(f),\phi \right\rangle \end{aligned))}

The Lemma combined with the fact that the formal transpose of the formal transpose is the original differential operator, that is, ${\displaystyle P_{**}=P,}$[20] enables us to arrive at the correct definition: the formal transpose induces the (continuous) canonical linear operator ${\displaystyle P_{*}:C_{c}^{\infty }(U)\to C_{c}^{\infty }(U)}$ defined by ${\displaystyle \phi \mapsto P_{*}(\phi ).}$ We claim that the transpose of this map, ${\displaystyle {}^{t}P_{*}:{\mathcal {D))'(U)\to {\mathcal {D))'(U),}$ can be taken as ${\displaystyle D_{P}.}$ To see this, for every ${\displaystyle \phi \in {\mathcal {D))(U),}$ compute its action on a distribution of the form ${\displaystyle D_{f))$ with ${\displaystyle f\in C^{\infty }(U)}$:

{\displaystyle {\begin{aligned}\left\langle {}^{t}P_{*}\left(D_{f}\right),\phi \right\rangle &=\left\langle D_{P_{**}(f)},\phi \right\rangle &&{\text{Using Lemma above with ))P_{*}{\text{ in place of ))P\\&=\left\langle D_{P(f)},\phi \right\rangle &&P_{**}=P\end{aligned))}

We call the continuous linear operator ${\displaystyle D_{P}:={}^{t}P_{*}:{\mathcal {D))'(U)\to {\mathcal {D))'(U)}$ the differential operator on distributions extending P.[20] Its action on an arbitrary distribution ${\displaystyle S}$ is defined via:

${\displaystyle D_{P}(S)(\phi )=S\left(P_{*}(\phi )\right)\quad {\text{ for all ))\phi \in {\mathcal {D))(U).}$

If ${\displaystyle (T_{i})_{i=1}^{\infty ))$ converges to ${\displaystyle T\in {\mathcal {D))'(U)}$ then for every multi-index ${\displaystyle \alpha ,(\partial ^{\alpha }T_{i})_{i=1}^{\infty ))$ converges to ${\displaystyle \partial ^{\alpha }T\in {\mathcal {D))'(U).}$

#### Multiplication of distributions by smooth functions

A differential operator of order 0 is just multiplication by a smooth function. And conversely, if ${\displaystyle f}$ is a smooth function then ${\displaystyle P:=f(x)}$ is a differential operator of order 0, whose formal transpose is itself (that is, ${\displaystyle P_{*}=P}$). The induced differential operator ${\displaystyle D_{P}:{\mathcal {D))'(U)\to {\mathcal {D))'(U)}$ maps a distribution T to a distribution denoted by ${\displaystyle fT:=D_{P}(T).}$ We have thus defined the multiplication of a distribution by a smooth function.

We now give an alternative presentation of multiplication by a smooth function. If ${\displaystyle m:U\to \mathbb {R} }$ is a smooth function and T is a distribution on U, then the product ${\displaystyle mT}$ is defined by

${\displaystyle \langle mT,\phi \rangle =\langle T,m\phi \rangle \qquad {\text{ for all ))\phi \in {\mathcal {D))(U).}$

This definition coincides with the transpose definition since if ${\displaystyle M:{\mathcal {D))(U)\to {\mathcal {D))(U)}$ is the operator of multiplication by the function m (that is, ${\displaystyle (M\phi )(x)=m(x)\phi (x)}$), then

${\displaystyle \int _{U}(M\phi )(x)\psi (x)\,dx=\int _{U}m(x)\phi (x)\psi (x)\,dx=\int _{U}\phi (x)m(x)\psi (x)\,dx=\int _{U}\phi (x)(M\psi )(x)\,dx,}$
so that ${\displaystyle {}^{t}M=M.}$

Under multiplication by smooth functions, ${\displaystyle {\mathcal {D))'(U)}$ is a module over the ring ${\displaystyle C^{\infty }(U).}$ With this definition of multiplication by a smooth function, the ordinary product rule of calculus remains valid. However, a number of unusual identities also arise. For example, if ${\displaystyle \delta }$ is the Dirac delta distribution on ${\displaystyle \mathbb {R} ,}$ then ${\displaystyle m\delta =m(0)\delta ,}$ and if ${\displaystyle \delta ^{'))$ is the derivative of the delta distribution, then

${\displaystyle m\delta '=m(0)\delta '-m'\delta =m(0)\delta '-m'(0)\delta .}$

The bilinear multiplication map ${\displaystyle C^{\infty }(\mathbb {R} ^{n})\times {\mathcal {D))'(\mathbb {R} ^{n})\to {\mathcal {D))'\left(\mathbb {R} ^{n}\right)}$ given by ${\displaystyle (f,T)\mapsto fT}$ is not continuous; it is however, hypocontinuous.[21]

Example. For any distribution T, the product of T with the function that is identically 1 on U is equal to T.

Example. Suppose ${\displaystyle (f_{i})_{i=1}^{\infty ))$ is a sequence of test functions on U that converges to the constant function ${\displaystyle 1\in C^{\infty }(U).}$ For any distribution T on U, the sequence ${\displaystyle (f_{i}T)_{i=1}^{\infty ))$ converges to ${\displaystyle T\in {\mathcal {D))'(U).}$[22]

If ${\displaystyle (T_{i})_{i=1}^{\infty ))$ converges to ${\displaystyle T\in {\mathcal {D))'(U)}$ and ${\displaystyle (f_{i})_{i=1}^{\infty ))$ converges to ${\displaystyle f\in C^{\infty }(U)}$ then ${\displaystyle (f_{i}T_{i})_{i=1}^{\infty ))$ converges to ${\displaystyle fT\in {\mathcal {D))'(U).}$

##### Problem of multiplying distributions

It is easy to define the product of a distribution with a smooth function, or more generally the product of two distributions whose singular supports are disjoint. With more effort it is possible to define a well-behaved product of several distributions provided their wave front sets at each point are compatible. A limitation of the theory of distributions (and hyperfunctions) is that there is no associative product of two distributions extending the product of a distribution by a smooth function, as has been proved by Laurent Schwartz in the 1950s. For example, if ${\displaystyle \operatorname {p.v.} {\frac {1}{x))}$ is the distribution obtained by the Cauchy principal value

${\displaystyle \left(\operatorname {p.v.} {\frac {1}{x))\right)(\phi )=\lim _{\varepsilon \to 0^{+))\int _{|x|\geq \varepsilon }{\frac {\phi (x)}{x))\,dx\quad {\text{ for all ))\phi \in {\mathcal {S))(\mathbb {R} ).}$

If ${\displaystyle \delta }$ is the Dirac delta distribution then

${\displaystyle (\delta \times x)\times \operatorname {p.v.} {\frac {1}{x))=0}$
but,
${\displaystyle \delta \times \left(x\times \operatorname {p.v.} {\frac {1}{x))\right)=\delta }$
so the product of a distribution by a smooth function (which is always well defined) cannot be extended to an associative product on the space of distributions.

Thus, nonlinear problems cannot be posed in general and thus not solved within distribution theory alone. In the context of quantum field theory, however, solutions can be found. In more than two spacetime dimensions the problem is related to the regularization of divergences. Here Henri Epstein and Vladimir Glaser developed the mathematically rigorous (but extremely technical) causal perturbation theory. This does not solve the problem in other situations. Many other interesting theories are non linear, like for example the Navier–Stokes equations of fluid dynamics.

Several not entirely satisfactory[citation needed] theories of algebras of generalized functions have been developed, among which Colombeau's (simplified) algebra is maybe the most popular in use today.

Inspired by Lyons' rough path theory,[23] Martin Hairer proposed a consistent way of multiplying distributions with certain structure (regularity structures[24]), available in many examples from stochastic analysis, notably stochastic partial differential equations. See also Gubinelli–Imkeller–Perkowski (2015) for a related development based on Bony's paraproduct from Fourier analysis.

### Composition with a smooth function

Let T be a distribution on ${\displaystyle U.}$ Let V be an open set in ${\displaystyle \mathbb {R} ^{n},}$ and ${\displaystyle F:V\to U.}$ If ${\displaystyle F}$ is a submersion, it is possible to define

${\displaystyle T\circ F\in {\mathcal {D))'(V).}$

This is the composition of the distribution ${\displaystyle T}$ with ${\displaystyle F}$, and is also called the pullback of ${\displaystyle T}$ along ${\displaystyle F}$, sometimes written

${\displaystyle F^{\sharp }:T\mapsto F^{\sharp }T=T\circ F.}$

The pullback is often denoted ${\displaystyle F^{*},}$ although this notation should not be confused with the use of '*' to denote the adjoint of a linear mapping.

The condition that ${\displaystyle F}$ be a submersion is equivalent to the requirement that the Jacobian derivative ${\displaystyle dF(x)}$ of ${\displaystyle F}$ is a surjective linear map for every ${\displaystyle x\in V.}$ A necessary (but not sufficient) condition for extending ${\displaystyle F^{\#))$ to distributions is that ${\displaystyle F}$ be an open mapping.[25] The Inverse function theorem ensures that a submersion satisfies this condition.

If ${\displaystyle F}$ is a submersion, then ${\displaystyle F^{\#))$ is defined on distributions by finding the transpose map. Uniqueness of this extension is guaranteed since ${\displaystyle F^{\#))$ is a continuous linear operator on ${\displaystyle {\mathcal {D))(U).}$ Existence, however, requires using the change of variables formula, the inverse function theorem (locally) and a partition of unity argument.[26]

In the special case when ${\displaystyle F}$ is a diffeomorphism from an open subset V of ${\displaystyle \mathbb {R} ^{n))$ onto an open subset U of ${\displaystyle \mathbb {R} ^{n))$ change of variables under the integral gives:

${\displaystyle \int _{V}\phi \circ F(x)\psi (x)\,dx=\int _{U}\phi (x)\psi \left(F^{-1}(x)\right)\left|\det dF^{-1}(x)\right|\,dx.}$

In this particular case, then, ${\displaystyle F^{\#))$ is defined by the transpose formula:

${\displaystyle \left\langle F^{\sharp }T,\phi \right\rangle =\left\langle T,\left|\det d(F^{-1})\right|\phi \circ F^{-1}\right\rangle .}$

### Convolution

Under some circumstances, it is possible to define the convolution of a function with a distribution, or even the convolution of two distributions. Recall that if ${\displaystyle f}$ and ${\displaystyle g}$ are functions on ${\displaystyle \mathbb {R} ^{n))$ then we denote by ${\displaystyle f\ast g}$ the convolution of ${\displaystyle f}$ and ${\displaystyle g,}$ defined at ${\displaystyle x\in \mathbb {R} ^{n))$ to be the integral

${\displaystyle (f\ast g)(x):=\int _{\mathbb {R} ^{n))f(x-y)g(y)\,dy=\int _{\mathbb {R} ^{n))f(y)g(x-y)\,dy}$
provided that the integral exists. If ${\displaystyle 1\leq p,q,r\leq \infty }$ are such that ${\textstyle {\frac {1}{r))={\frac {1}{p))+{\frac {1}{q))-1}$ then for any functions ${\displaystyle f\in L^{p}(\mathbb {R} ^{n})}$ and ${\displaystyle g\in L^{q}(\mathbb {R} ^{n})}$ we have ${\displaystyle f\ast g\in L^{r}(\mathbb {R} ^{n})}$ and ${\displaystyle \|f\ast g\|_{L^{r))\leq \|f\|_{L^{p))\|g\|_{L^{q)).}$[27] If ${\displaystyle f}$ and ${\displaystyle g}$ are continuous functions on ${\displaystyle \mathbb {R} ^{n},}$ at least one of which has compact support, then ${\displaystyle \operatorname {supp} (f\ast g)\subseteq \operatorname {supp} (f)+\operatorname {supp} (g)}$ and if ${\displaystyle A\subseteq \mathbb {R} ^{n))$ then the value of ${\displaystyle f\ast g}$ on ${\displaystyle A}$ do not depend on the values of ${\displaystyle f}$ outside of the Minkowski sum ${\displaystyle A-\operatorname {supp} (g)=\{a-s:a\in A,s\in \operatorname {supp} (g)\}.}$[27]

Importantly, if ${\displaystyle g\in L^{1}(\mathbb {R} ^{n})}$ has compact support then for any ${\displaystyle 0\leq k\leq \infty ,}$ the convolution map ${\displaystyle f\mapsto f\ast g}$ is continuous when considered as the map ${\displaystyle C^{k}(\mathbb {R} ^{n})\to C^{k}(\mathbb {R} ^{n})}$ or as the map ${\displaystyle C_{c}^{k}(\mathbb {R} ^{n})\to C_{c}^{k}(\mathbb {R} ^{n}).}$[27]

#### Translation and symmetry

Given ${\displaystyle a\in \mathbb {R} ^{n},}$ the translation operator ${\displaystyle \tau _{a))$ sends ${\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} }$ to ${\displaystyle \tau _{a}f:\mathbb {R} ^{n}\to \mathbb {C} ,}$ defined by ${\displaystyle \tau _{a}f(y)=f(y-a).}$ This can be extended by the transpose to distributions in the following way: given a distribution ${\displaystyle T,}$ the translation of ${\displaystyle T}$ by ${\displaystyle a}$ is the distribution ${\displaystyle \tau _{a}T:{\mathcal {D))(\mathbb {R} ^{n})\to \mathbb {C} }$ defined by ${\displaystyle \tau _{a}T(\phi ):=\left\langle T,\tau _{-a}\phi \right\rangle .}$[28][29]

Given ${\displaystyle f:\mathbb {R} ^{n}\to \mathbb {C} ,}$ define the function ${\displaystyle {\tilde {f)):\mathbb {R} ^{n}\to \mathbb {C} }$ by ${\displaystyle {\tilde {f))(x):=f(-x).}$ Given a distribution ${\displaystyle T,}$ let ${\displaystyle {\tilde {T)):{\mathcal {D))(\mathbb {R} ^{n})\to \mathbb {C} }$ be the distribution defined by ${\displaystyle {\tilde {T))(\phi ):=T\left({\tilde {\phi ))\right).}$ The operator ${\displaystyle T\mapsto {\tilde {T))}$ is called the symmetry with respect to the origin.[28]

#### Convolution of a test function with a distribution

Convolution with ${\displaystyle f\in {\mathcal {D))(\mathbb {R} ^{n})}$ defines a linear map:

{\displaystyle {\begin{alignedat}{4}C_{f}:\,&{\mathcal {D))(\mathbb {R} ^{n})&&\to \,&&{\mathcal {D))(\mathbb {R} ^{n})\\&g&&\mapsto \,&&f\ast g\\\end{alignedat))}
which is continuous with respect to the canonical LF space topology on ${\displaystyle {\mathcal {D))(\mathbb {R} ^{n}).}$

Convolution of ${\displaystyle f}$ with a distribution ${\displaystyle T\in {\mathcal {D))'(\mathbb {R} ^{n})}$ can be defined by taking the transpose of ${\displaystyle C_{f))$ relative to the duality pairing of ${\displaystyle {\mathcal {D))(\mathbb {R} ^{n})}$ with the space ${\displaystyle {\mathcal {D))'(\mathbb {R} ^{n})}$ of distributions.[30] If ${\displaystyle f,g,\phi \in {\mathcal {D))(\mathbb {R} ^{n}),}$ then by Fubini's theorem

${\displaystyle \langle C_{f}g,\phi \rangle =\int _{\mathbb {R} ^{n))\phi (x)\int _{\mathbb {R} ^{n))f(x-y)g(y)\,dy\,dx=\left\langle g,C_{\tilde {f))\phi \right\rangle .}$

Extending by continuity, the convolution of ${\displaystyle f}$ with a distribution ${\displaystyle T}$ is defined by

${\displaystyle \langle f\ast T,\phi \rangle =\left\langle T,{\tilde {f))\ast \phi \right\rangle ,\quad {\text{ for all ))\phi \in {\mathcal {D))(\mathbb {R} ^{n}).}$

An alternative way to define the convolution of a test function ${\displaystyle f}$ and a distribution ${\displaystyle T}$ is to use the translation operator ${\displaystyle \tau _{a}.}$ The convolution of the compactly supported function ${\displaystyle f}$ and the distribution ${\displaystyle T}$ is then the function defined for each ${\displaystyle x\in \mathbb {R} ^{n))$ by

${\displaystyle (f\ast T)(x)=\left\langle T,\tau _{x}{\tilde {f))\right\rangle .}$

It can be shown that the convolution of a smooth, compactly supported function and a distribution is a smooth function. If the distribution ${\displaystyle T}$ has compact support then if ${\displaystyle f}$ is a polynomial (resp. an exponential function, an analytic function, the restriction of an entire analytic function on ${\displaystyle \mathbb {C} ^{n))$ to ${\displaystyle \mathbb {R} ^{n},}$ the restriction of an entire function of exponential type in ${\displaystyle \mathbb {C} ^{n))$ to ${\displaystyle \mathbb {R} ^{n))$) then the same is true of ${\displaystyle T\ast f.}$[28] If the distribution ${\displaystyle T}$ has compact support as well, then ${\displaystyle f\ast T}$ is a compactly supported function, and the Titchmarsh convolution theorem Hörmander (1983, Theorem 4.3.3) implies that:

${\displaystyle \operatorname {ch} (\operatorname {supp} (f\ast T))=\operatorname {ch} (\operatorname {supp} (f))+\operatorname {ch} (\operatorname {supp} (T))}$
where ${\displaystyle \operatorname {ch} }$ denotes the convex hull and supp denotes the support.

#### Convolution of a smooth function with a distribution

Let ${\displaystyle f\in C^{\infty }(\mathbb {R} ^{n})}$ and ${\displaystyle T\in {\mathcal {D))'(\mathbb {R} ^{n})}$ and assume that at least one of ${\displaystyle f}$ and ${\displaystyle T}$ has compact support. The convolution of ${\displaystyle f}$ and ${\displaystyle T,}$ denoted by ${\displaystyle f\ast T}$ or by ${\displaystyle T\ast f,}$ is the smooth function:[28]

{\displaystyle {\begin{alignedat}{4}f\ast T:\,&\mathbb {R} ^{n}&&\to \,&&\mathbb {C} \\&x&&\mapsto \,&&\left\langle T,\tau _{x}{\tilde {f))\right\rangle \\\end{alignedat))}
satisfying for all ${\displaystyle p\in \mathbb {N} ^{n))$:
{\displaystyle {\begin{aligned}&\operatorname {supp} (f\ast T)\subseteq \operatorname {supp} (f)+\operatorname {supp} (T)\\[6pt]&{\text{ for all ))p\in \mathbb {N} ^{n}:\quad {\begin{cases}\partial ^{p}\left\langle T,\tau _{x}{\tilde {f))\right\rangle =\left\langle T,\partial ^{p}\tau _{x}{\tilde {f))\right\rangle \\\partial ^{p}(T\ast f)=(\partial ^{p}T)\ast f=T\ast (\partial ^{p}f).\end{cases))\end{aligned))}

If ${\displaystyle T}$ is a distribution then the map ${\displaystyle f\mapsto T\ast f}$ is continuous as a map ${\displaystyle {\mathcal {D))(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}$ where if in addition ${\displaystyle T}$ has compact support then it is also continuous as the map ${\displaystyle C^{\infty }(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}$ and continuous as the map ${\displaystyle {\mathcal {D))(\mathbb {R} ^{n})\to {\mathcal {D))(\mathbb {R} ^{n}).}$[28]

If ${\displaystyle L:{\mathcal {D))(\mathbb {R} ^{n})\to C^{\infty }(\mathbb {R} ^{n})}$ is a continuous linear map such that ${\displaystyle L\partial ^{\alpha }\phi =\partial ^{\alpha }L\phi }$ for all ${\displaystyle \alpha }$ and all ${\displaystyle \phi \in {\mathcal {D))(\mathbb {R} ^{n})}$ then there exists a distribution ${\displaystyle T\in {\mathcal {D))'(\mathbb {R} ^{n})}$ such that ${\displaystyle L\phi =T\circ \phi }$ for all ${\displaystyle \phi \in {\mathcal {D))(\mathbb {R} ^{n}).}$[7]

Example.[7] Let ${\displaystyle H}$ be the Heaviside function on ${\displaystyle \mathbb {R} .}$ For any ${\displaystyle \phi \in {\mathcal {D))(\mathbb {R} ),}$

${\displaystyle (H\ast \phi )(x)=\int _{-\infty }^{x}\phi (t)\,dt.}$

Let ${\displaystyle \delta }$ be the Dirac measure at 0 and ${\displaystyle \delta '}$ its derivative as a distribution. Then ${\displaystyle \delta '\ast H=\delta }$ and ${\displaystyle 1\ast \delta '=0.}$ Importantly, the associative law fails to hold:

${\displaystyle 1=1\ast \delta =1\ast (\delta '\ast H)\neq (1\ast \delta ')\ast H=0\ast H=0.}$

#### Convolution of distributions

It is also possible to define the convolution of two distributions ${\displaystyle S}$ and ${\displaystyle T}$ on ${\displaystyle \mathbb {R} ^{n},}$ provided one of them has compact support. Informally, in order to define ${\displaystyle S\ast T}$ where ${\displaystyle T}$ has compact support, the idea is to extend the definition of the convolution ${\displaystyle \,\ast \,}$ to a linear operation on distributions so that the associativity formula

${\displaystyle S\ast (T\ast \phi )=(S\ast T)\ast \phi }$
continues to hold for all test functions ${\displaystyle \phi .}$[31]

It is also possible to provide a more explicit characterization of the convolution of distributions.[30] Suppose that ${\displaystyle S}$ and ${\displaystyle T}$ are distributions and that ${\displaystyle S}$ has compact support. Then the linear maps

{\displaystyle {\begin{alignedat}{9}\bullet \ast {\tilde {S)):\,&{\mathcal {D))(\mathbb {R} ^{n})&&\to \,&&{\mathcal {D))(\mathbb {R} ^{n})&&\quad {\text{ and ))\quad &&\bullet \ast {\tilde {T)):\,&&{\mathcal {D))(\mathbb {R} ^{n})&&\to \,&&{\mathcal {D))(\mathbb {R} ^{n})\\&f&&\mapsto \,&&f\ast {\tilde {S))&&&&&&f&&\mapsto \,&&f\ast {\tilde {T))\\\end{alignedat))}
are continuous. The transposes of these maps: